# 6700 Series Linear Programmable AC Power Source 

## Operation Manual

Extech Electronics Ltd., Co.<br>류․ TEL: 886-26570123

FAX: 886-26573066
4 11F-1, No. 408, Ruiguang Rd., Neihu District, Website: http://www.extech-electronics.com Taipei 114. Taiwan

## WARRANTY

EXTECH ELECTRONICS CO., LTD., certifies that the instrument listed in this manual meets or exceeds published manufacturing specifications. This instrument was calibrated using standards that are traceable to the National Institute of Standards Taiwan.

Your new instrument is warranted to be free from defects in workmanship and material for a period of (2) year for standard model from date of shipment. During the warranty period, you must return the instrument to Extech Electronics Co., or its branches or its authorized distributor for repair. Extech Electronics Co., reserves the right to use its discretion on replacing the faulty parts or replacing the assembly or the whole unit.

Follow below states, EXTECH will void your warranty.

- Operate under non-normal , contrived omission, or accidental calamity (including, temblor, floods, rebellion, and fire etc.)
- Any non-authorized modifications, tampering or physical damage.
- Elimination of any connections in the earth grounding system or bypassing any safety systems.
- Use of non-authorized parts in the repair of this instrument. Parts used must be parts that are recommended by EXTECH as an acceptable specified part.

This warranty does not cover accessories not of EXTECH manufacture.

Except as provided herein, EXTECH makes no warranties to the purchaser of this instrument and all other warranties, express or implied (including, without limitation, merchantability or fitness for a particular purpose) are hereby excluded, disclaimed and waived.

EXTECH recommends that your instrument be calibrated on a twelve month cycle.

## Content

CHAPTER 1. INTRODUCTION ..... 1
1.1 Safety Precaution ..... 1
1.2 Service and Maintenance ..... 1
CHAPTER 2. GETTING STARTED ..... 2
2.1 Unpacking and Inspection ..... 2
2.2 Preparation For Use ..... 2
2.2.1 Power Requirements ..... 2
2.2.2 Power Cable ..... 2
2.3 Environmental Conditions. ..... 3
CHAPTER 3. SPECIFICATIONS ..... 4
3.1 Specification ..... 4
Opt. 623 Low Range Meter Resolution 0.1 mA / 0.01W for 6705 / 6710 ..... 5
Opt. 624 Output 0-600V. ..... 5
Opt. 625 Output Frequency $45.0 \mathrm{~Hz}-1000.0 \mathrm{~Hz}$ ..... 6
3.2 Front Panel Description. ..... 7
3.3 Rear Panel Description. ..... 8
3.4 Dimension ..... 10
CHAPTER 4. OPERATION DESCRIPTION ..... 12
4.1 Description of the parameters ..... 12
4.2 Description of the Softkeys. ..... 13
4.2.1 Memory Softkey ..... 13
4.2.2 Step Softkey ..... 13
4.2.3 Edit Softkey. ..... 14
4.2.4 Results Softkey ..... 25
4.2.5 System Softkey ..... 25
4.3 Description of Test ..... 33
4.3.1 If the setting of the test parameter "AUTO RUN" is "PROGRAM". ..... 33
4.3.2 If the setting of the test parameter "AUTO RUN" is "MANUAL". ..... 33
4.3.3 Description of Test Softkeys ..... 34
4.4 Displayed Messages ..... 35
CHAPTER 5. INTERFACE GPIB AND RS-232 ..... 36
5.1 RS-232 Interface ..... 36
5.2 GPIB Interface. ..... 37
5.3 Command List ..... 37
CHAPTER 6. DESCPIPTION OF APPLICATION ..... 41
6.1 Remote Interface ..... 41
Memories Input Control ..... 41
CHAPTER 7. CALIBRATION ..... 43
7.1 Enter The Calibration Mode ..... 43
7.2 Calibration points ..... 43
Standard ..... 48
Opt. 624 Output 0-600V.

Opt. 623 Low Range Meter Resolution 0.1 mA / 0.01W for 6705 / 6710 ........................... 48

## CHAPTER 1．INTRODUCTION

## 1．1 Safety Precaution

－This product and its related documentation must be reviewed for familiarization with safety markings and instructions before operation．
－Before applying power verify that the instrument is set to the correct line voltage and the correct fuse is installed．

To prevent accidental injury or death，these safety procedures must be strictly observed when handling and using the test instrument．

## 1．2 Service and Maintenance

## User Service

To prevent electric shock do not remove the instrument cover．There are no user serviceable parts inside．Routine maintenance or cleaning of internal parts is not necessary．Any external cleaning should be done with a clean dry or slightly damp cloth．Avoid the use of cleaning agents or chemicals to prevent any foreign liquid from entering the cabinet through ventilation holes or damaging controls and switches，also some chemicals may damage plastic parts or lettering．Any replacement cables and high voltage components should be acquired directly from Extech Electronics Co．or its distributor．

## Service Interval

The instrument must be returned at least once a year to an Extech Electronics authorized service center for calibration and inspection of safety related components．Extech Electronics will not be held liable for injuries suffered if the instrument is not properly maintained and safety checked annually．

## User Modifications

Unauthorized user modifications will void your warranty．Extech Electronics will not be responsible for any injuries sustained due to unauthorized equipment modifications or use of parts not specified by Extech Electronics．Instruments returned to Extech Electronics with unsafe modifications will be returned to their original operating condition at the customer＇s expense．

## CHAPTER 2．GETTING STARTED

This section contains information for the unpacking，inspection，preparation for use and storage of your Extech Electronics Co．，Ltd．product．。

## 2．1 Unpacking and Inspection

Your instrument was shipped in a custom foam insulated container that complies with ASTM D4169－92a Assurance Level II Distribution Cycle 13 Performance Test Sequence If the shipping carton is damaged，inspect the contents for visible damage such as dents， scratches，or broken display．If the instrument is damaged，notify the carrier and Extech Electronics＇s customer support department．Please save the shipping carton and packing material for the carrier＇s inspection．Our customer support department will assist you in the repair or replacement of your instrument．Please do not return your product without first notifying us．

Please retain all of the original packaging materials．

## 2．2 Preparation For Use

## 2．2．1 Power Requirements

This instrument requires a power source of 115 volts $\mathrm{AC} \pm 15 \%, 50 / 60 \mathrm{~Hz}$ single phase or 230 volts $\mathrm{AC} \pm 15 \%, 50 / 60 \mathrm{~Hz}$ single phase．Please check the rear panel to be sure the proper switch setting is selected for your line voltage requirements before turning your instrument on．

## CAUTION

Do not switch the line voltage selector switch located on the rear panel while the instrument is on or operating．This may cause internal damage and represents a safety risk to the operator．

## 2．2．2 Power Cable

WARNING Before connecting power to this instrument，the protective ground（Earth） terminals of this instrument must be connected to the protective conductor of the line（mains）power cord．The main plug shall only be inserted in a socket outlet （receptacle）provided with a protective ground（earth）contact．This protective ground（earth） must not be defeated by the use of an extension cord without a protective conductor （grounding）．

## 2．3 Environmental Conditions

## Operating Environment

Temperatures： $0^{\circ}-40^{\circ} \mathrm{C}\left(32^{\circ}-104^{\circ} \mathrm{F}\right)$
Relative humidity：20\％－80\％
Altitude： 2,000 meters（ 6,500 inches）

The instrument should also be protected against temperature extremes which may cause condensation within the instrument．

## Storage and Shipping Environment

This instrument may be stored or shipped in environments with the following limits：
Temperature $\qquad$ $-40^{\circ}$ to $+55^{\circ} \mathrm{C}$
Altitude： 7，620 meters（25，000 inches）

The instrument should also be protected against temperature extremes，which may cause condensation within the instrument．

## Packaging

Original Packaging
Please retain all original packaging materials that you originally received．If you are returning your instrument to us for servicing please repackage the instrument in its original container．Please enclose the instrument with all options，accessories and test leads． Indicate the nature of the problem or type of service needed．Also，please mark the container ＂FRAGILE＂to insure proper handling．

## Other Packaging

If you do not have the original packaging materials，please follow these guidelines：
－Wrap the instrument in a bubble pack or similar foam．Enclose the same information as above．
－Use a strong double－wall container that is made for shipping instrumentation． 350 lb ．test material is adequate．
－Use a layer of shock－absorbing material 70 to 100 mm （3 to 4 inch）thick around all sides of the instrument．Protect the control panel with cardboard．
－Seal the container securely．
－Mark the container＂FRAGILE＂to insure proper handling．

## CHAPTER 3．SPECIFICATIONS

## 3．1 Specification

| Model |  | 6705 | 6710 | 6720 | 6730 | 6740 | 6750 ${ }^{\text {＊}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT |  |  |  |  |  |  |  |
| Max．current |  | 15A | 30A | 30A | 50A | 60A | 100A |
| Power Factor |  | 0.7 |  |  |  |  |  |
| Phase |  | $1 \varnothing$ |  |  |  |  |  |
| Voltage |  | 115／230Vac $\pm 15 \%$ |  | 230Vac $\pm 15 \%$ |  |  |  |
| Frequency |  | $47-63 \mathrm{~Hz}$ |  |  |  |  |  |
| OUTPUT |  |  |  |  |  |  |  |
| Power rating |  | 500VA | 1000VA | 2000VA | 3000VA | 4000VA | 5000VA |
| Max． Current（r．m．s） | 0－150V | 4．2A | 8．4A | 16．8A | 25．2A | 33．6A | 42A |
|  | 0－300V | 2．1A | 4．2A | 8．4A | 12．6A | 16．8A | 21A |
| Max． Current（peak） | 0－150V | 16．8A | 33．6A | 67．2A | 100．8A | 134．4A | 168A |
|  | 0－300V | 8．4A | 16．8A | 33．6A | 50．4A | 67．2A | 84A |
| Phase |  | 1ه／2W |  |  |  |  |  |
| THD（Total Harmonic Distortion） |  | $\leq 0.5 \%$ at $45-500 \mathrm{~Hz}$（Resistive Load） |  |  |  |  |  |
| Crest Factor |  | ＞ 4 |  |  |  |  |  |
| Line Regulation |  | 0．1\％max for a $\pm 10 \%$ line change． |  |  |  |  |  |
| Load Regulation |  | $\leq 0.5 \%$（Resistive Load） |  |  |  |  |  |
| Response Time |  | ＜100 $\mu \mathrm{S}$ |  |  |  |  |  |
| SETTING |  |  |  |  |  |  |  |


| Voltage | Range |  | 0－300V，150／300V Auto |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Resolution |  | 0.1 V |  |
|  | Accuracy |  | $\pm(0.5 \%$ of setting＋2 counts） |  |
| Frequency | Range |  | $45-500 \mathrm{~Hz}$ |  |
|  | Resolution |  | 0.1 Hz at $45-99.9 \mathrm{~Hz}, 1 \mathrm{~Hz}$ at $100-500 \mathrm{~Hz}$ |  |
|  | Accuracy |  | $\pm 0.02 \%$ of setting |  |
| Starting\＆ <br> Ending <br> Phase Angle | Range |  | 0－360。 |  |
|  | Resolution |  | 10 |  |
|  | Accuracy |  | $\pm 1 \circ(45-65 \mathrm{~Hz})$ |  |
| MEASUREMENT |  |  |  |  |
| Frequency | Range |  | $45.0 \mathrm{~Hz}-500.0 \mathrm{~Hz} / 501.0 \mathrm{~Hz}-1000.0 \mathrm{~Hz}$（Opt．625） |  |
|  | Resolution |  | 0.1 Hz |  |
|  | Accuracy |  | $\pm 0.1 \mathrm{~Hz}$ at $45.0-500.0 \mathrm{~Hz} / \pm 0.5 \mathrm{~Hz}$ at $501.0-1000.0 \mathrm{~Hz}$ |  |
| Voltage | Range |  | 0．0－300．0V |  |
|  | Resolution |  | 0.1 V |  |
|  | Accuracy |  | $\pm$（0．5\％of reading＋2 counts） |  |
| Current（r．m．s） | Range | L | 0．000－3．500A | 0．000－7．000A |
|  |  | H | 3．00－35．00A | 6．00－42．00A |
|  | Resolution | L | 0.001 A | 0．002A |
|  |  | H | 0．01A | 0．02A |
|  | Accuracy | L | $\pm$（0．5\％of reading +5 counts） |  |
|  |  | H | $\pm$（0．5\％of reading +3 counts） |  |
| Current（peak） | Range |  | 0．0－200．0A |  |
|  | Resolution |  | 0．1A |  |
|  | Accuracy |  | $\pm$（1\％of reading＋2 counts） |  |
| Power | Range | L | 0．0－350．0W | 0．0－700．0W |
|  |  | H | 300－4000W | 300－5000W |
|  | Resolution | L | 0．1W | 0．2W |
|  |  | H | 1W | 2W |
|  | Accuracy | L | $\pm$（0．6\％of reading +5 counts） |  |
|  |  | H | $\pm$（0．6\％of reading＋2 counts） |  |
| Power Factor | Range |  | 0－1．000 |  |
|  | Resolution |  | W／VA ，Calculated and displayed to three significant digits |  |


| Accuracy |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GENERAL |  |  |  |  |  |  |
| Remote Input Signal（Option） | Test，Reset，Recall program memory 1 through 7 |  |  |  |  |  |
| Remote Output Signal | Pass，Fail，Test－in Process |  |  |  |  |  |
| Memory | 50 memories， 9 steps／memory |  |  |  |  |  |
| Sync Output Signal | Output Signal 10V，BNC type |  |  |  |  |  |
| Timer | 0＝Continuous，0．1－999．9（Unit：sec，minute，hour selectable） |  |  |  |  |  |
| Alarm Volume Setting | Range：0－9；0＝OFF， 1 is softest volume， 9 is loudest volume． |  |  |  |  |  |
| Graphic Display | $240 \times 64$ dot resolution Monographic LCD／Contrast 9 Levels 1－9 |  |  |  |  |  |
| Auto loop cycle | By step or memory，or system loop cycle setting． $0=$ Continuous，OFF，2～9999 |  |  |  |  |  |
| Over Current Fold Back | On／Off ，Setting On when output current over setting A－Hi value it will fold back output voltage to keep constant output current is setting A－Hi value． |  |  |  |  |  |
| Protection | OCP，OTP，OVP and Alarm |  |  |  |  |  |
| Interface | GPIB／RS232／Remote I／P control option |  |  |  |  |  |
|  | $\begin{gathered} 430 \times 89 \times \\ 400,2 \mathrm{U} \end{gathered}$ | $\begin{gathered} 430 \times 89 \times \\ 560,2 \mathrm{U} \end{gathered}$ | $\begin{array}{r} 430 \times 267 \\ \times 650,6 \mathrm{U} \\ \hline \end{array}$ | $\begin{gathered} 430 \times 667 \times \\ 650,15 U \\ \hline \end{gathered}$ | $\begin{gathered} 430 \times 667 \times \\ 650,15 U \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline 430 \times 667 \times \\ 650,15 U \\ \hline \end{array}$ |
| Dimension（WxHxD）mm |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| Net Weight Operation Environment | 25Kg | 36Kg | 90Kg | 165Kg | 192Kg | － |
|  | $0-40^{\circ} \mathrm{C} / 20-80 \% \mathrm{RH}$ |  |  |  |  |  |

${ }^{* 1}$ special model

Opt． 623 Low Range Meter Resolution 0．1mA／0．01W for 6705 ／ 6710 MEASUREMENT

Range 1：$\quad 2.0-350.0 \mathrm{~mA}$
Resolution 1：0．1 mA
Accuracy 1：$\pm$（ $0.6 \%$ of reading +5 counts）
Range 2：0．300－3．500A
Current（r．m．s）Resolution $2: 0.001 \mathrm{~A}$
Accuracy 2 ：$\pm$（ $0.5 \%$ of reading +5 counts $)$
Range 3：$\quad 3.00-35.00 \mathrm{~A}$
Resolution 3 ：0．01A
Accuracy 3 ：$\pm$（ $0.5 \%$ of reading +3 counts）
Range 1：0．20－35．00W
Resolution 1：0．01W
Accuracy 1：$\pm$（ $0.6 \%$ of reading +5 counts $)$
Range 2：30．0－350．0W
Power Resolution 2：0．1W
Accuracy 2 ：$\pm$（ $0.6 \%$ of reading +5 counts）
Range 3：300－4000W
Resolution 3 ：1W
Accuracy 3 ：$\pm$（ $0.6 \%$ of reading +2 counts $)$

Opt． 624 Output 0 －600V

| Model | $\mathbf{6 7 0 5}$ | $\mathbf{6 7 1 0}$ | $\mathbf{6 7 2 0}$ | $\mathbf{6 7 3 0}$ | $\mathbf{6 7 4 0}$ | $\mathbf{6 7 5 0}^{* 1}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUTPUT |  |  |  |  |  |  |  |
| Power rating | 500 VA | 1000 VA | 2000 VA | 3000 VA | 4000 VA | 5000 VA |  |
| Max． | $0-300 \mathrm{~V}$ | 2.1 A | 4.2 A | 8.4 A | 12.6 A | 16.8 A | 21 A |
| Current（r．m．s） | $0-600 \mathrm{~V}$ | 1.05 A | 2.1 A | 4.2 A | 6.3 A | 8.4 A | 10.5 A |


| Max． | $0-300 \mathrm{~V}$ | 8.4 A | 16.8 A | 33.6 A | 50.4 A | 67.2 A | 84 A |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
|  | 0.600 V | 4.2 A | 8.4 A | 16.8 A | 25.2 A | 33.6 A | 42 A |

## SETTING

| Voltage | Range | $0-600 \mathrm{~V}, 300 / 600 \mathrm{~V}$ Auto |
| :--- | :--- | :---: |
|  | Resolution | 0.1 V |
|  | Accuracy | $\pm(0.5 \%$ of setting＋4 counts $)$ |
| MEASUREMENT |  |  |
|  | Range | $0.0-600.0 \mathrm{~V}$ |
|  | Resolution | 0.2 V |
|  | Accuracy | $\pm(0.5 \%$ of reading +2 counts $)$ |

Opt． 625 Output Frequency $45.0 \mathrm{~Hz}-1000.0 \mathrm{~Hz}$

| Model |  | 6705 | 6710 | 6720 | 6730 | 6740 | 6750＊＊ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SETTING |  |  |  |  |  |  |  |
|  | Range |  |  |  |  |  |  |
| Frequency | Resolution |  | 0.1 Hz | －99．9 | Hz at | 000Hz |  |
|  | Accuracy |  |  | $\pm 0.02$ | setting |  |  |
| MEASURE |  |  |  |  |  |  |  |
|  | Range |  |  | $\begin{gathered} 45.0 \mathrm{H} \\ 501.0 \mathrm{H} \end{gathered}$ | $\begin{aligned} & \overline{00.0 \mathrm{~Hz}} \\ & 000.0 \mathrm{H} \end{aligned}$ |  |  |
| Frequency | Resolution |  |  |  |  |  |  |
|  | Accuracy |  | z at 45. | 00．0Hz | 5 Hz | ．0－10 |  |

[^0]
## 3．2 Front Panel Description



1．POWER SWITCH：Rocker style power switch with international ON（ $\mid$ ）and OFF（0） markings．

2．GRAPHIC LCD： 240 X 64 Monographic LCD．

3．SOFT KEYS：Multifunction parameter selection keys．Keys used to select screens and change parameters．

4．NUMERIC DATA ENTRY：Keys used to enter numeric data．

5．Delete Key ：If you make a mistake or want to change the character，press the Delete key to delete the last character．

6．ROTARY KNOB：Adjust the value of all parameters．

7．LOCK Key．To disable all the keys on the front panel（ON／OFF）and to escape from programmable operation mode．

8．LOCK Indicator．When this LED is lighting，all the keys are disabled．

9．Universal Ac Output Socket：Output Socket（15A）．

10．TEST／RESET Key．To turn the output ON and OFF and press the key when abnormal operation occurs．

11．TEST／RESET Indicator ：When this LED is lighting，the output voltage is turned ON．

### 3.3 Rear Panel Description



1. SYNCHRONISM SINGAL SCOKET: BNC Socket. When the test is enable, it will output a 10 V voltage signal at the same time from the socket.
2. CALIBRATION ENABLE KEY: To enter the calibration mode press this key while the instrument is being powered ON.
3. INTERFACE PORT: Optional connector for interconnection to the PLC Remote of TEST , RESET functions and program memory selection 1~7. Or optional RS-232 Bus interface and IEEE 488 interface may be selected.
4. PLC REMOTE OUTPUT: Connector for monitoring PASS, FAIL and PROCESSING output signals.
5. OUTPUT L/N TERMINAL / UNIVERSAL AC OUTPUT SOCKET: Output Socket (15A) for 6705 or output $\mathrm{L} / \mathrm{N}$ terminal for 6710 .

## Rear Panel Description



6．INPUT SUPPLY TERMINAL／INPUT POWER RECEPTACLE：Standard IEC 320 connector for connection to a standard NEMA style line power（mains）cord for 6705．Or input supply terminal for 6710.

7．INPUT POWER SWITCH：Line voltage selection is set by the position of the switch． In the left position，it is set for 115 －volt operation，in the right position it is set for 230－volt operation．

8．THERMAL FAN：To cool the instrument．

9．GROUND TERMINAL：Common Ground terminal for Input and Output．

#  <br> Exceeding Technology Bariers 領…導．．．．．．．．．．．．．新 $7 / 0$ 

## 3．4 Dimension

Model ：6705


Dimension unit：mm

Model ： 6710


Dimension unit：mm

Model ： 6720


Model ：6730，6740，6750


Dimension unit：mm

## CHAPTER 4．OPERATION DESCRIPTION

Turn on the POWER switch located on the lower left－hand side of the front panel，and the initialization screen will appear as follows：

|  |  |
| :---: | :---: |
| $\begin{gathered} 6710 \\ \text { Version1.00 } \end{gathered}$ |  |

Then the reset screen will now be displayed as follows：


If you press＂$<$ more $>$＂key under reset condition，the screen will appear as follows：

| M 1－1 0.0 S F： $50.0 \mathrm{~Hz} \mathrm{AP:} 0.0 \mathrm{~A}$ Set $P: 0.0 \mathrm{~W}: 0.000 \mathrm{~A}$ PF： 0.000 | Result |
| :---: | :---: |
|  | System <br> ＜top＞ |

## 4．1 Description of the parameters

If the instrument is under reset condition，follow parameters show the setting value．But if the instrument is under test condition，the parameters show the output value．

M 1－1 ：Memory and step number ．
0．0s ：Dwell time。
F：50．0Hz ：Output Frequency。
AP ：0．0A ：Peak current 。
Set ：Display for present condition．It could be the＂Set＂，＂Dwell＂，＂Pass＂，＂Abort＂or others fail condition．For example，if it is under test condition and it will shows ＂Dwell＂．
P：0．0W ：Output Power。
A：0．000A ：Output Current
PF： 0.000 ：Power Factor

## 4．2 Description of the Softkeys

There are fives softkeys for selection，and they are：＂Memory＂，＂Step＂，＂Edit＂，＂Result＂ and＂System＂．

## 4．2．1 Memory Softkey

The softkey is for memory fast selected under reset condition．The display will show further number if press＂Memory＂softkey one time．


## 4．2．2 Step Softkey

The softkey is for step fast selected under reset condition．The display will show further number if press＂Step＂softkey one time．


Press the＂Step＂softkey．



## EXTEELI華儀電子

Exceeding Technology Barriers
$\qquad$

## 4．2．3 Edit Softkey

Press＂Edit＂softkey under the reset condition which is under the setting of Auto Run is ＂Program＂and＂Surge／Drop＂is＂ON＂，then display will show as follows．


Press＂Edit＂softkey under the reset condition which is under the setting of Auto Run is ＂Manual＂and＂Surge／Drop＂is＂ON＂，then display will show as follows．


| Auto．Run | Manual | SD－Cont． | ON |  |  |
| :--- | :---: | :---: | :---: | :---: | :--- |
| Mempry | 1 |  |  |  |  |
| Voltage | 100.0 V |  |  |  |  |
| Frequency | 60.0 Hz |  |  |  |  |
| A Hi－Lmt | 0.000 A |  |  |  |  |
| SD－Volt | 100.0 V |  |  | Edit |  |
| SD－Site | 0.1 ms |  |  |  |  |
| SD－Time | 0.1 ms |  |  | Exit |  |

Remark：
1．If the seeting of Surge／Drop is＂OFF＂，the display will not show the test parameters ：＂SD－Volt＂，＂SD－Site＂and＂SD－Time＂．

2．Please refer to section 4．2．3．2 for Test parameters＂Auto Run＂．and section 4．2．5 for the System parameter＂Surge／Drop＂．

There are four softkeys under the display，and they are＂$へ$＂，＂${ }^{\prime}$＂，＂Edit＂and＂Exit＂．
＂へ＂：Back to last parameter．
＂$\smile "$ ：Forward to next parameter．
＂Edit＂：Parameter edit function．
＂Exit＂：Exit the edit display and back to reset display．

## 4．2．3．1 Enter the Test Parameters Editting Mode

Please press＂Edit＂to edit the test parameters under Edit display．


Or you can press＂$\wedge$＂or＂$\llcorner$＂softkey to select the parameter you want to edit first，then press＇＂Edit＂softkey to edit it．


| Connect $=$ OFF | Prev |
| :--- | ---: |
| Step Connect Mode：ON／OFF | Next |
|  | Change |
|  | Exit |

Use numeric keypad to enter the new number or pressing＂Change＂softkey to change the parameter mode．

## 4．2．3．2 Editting Test Parameter

## Auto Run Mode Selection

When the parameter＂Auto Run＂is selected，the display will show as follows．

| Auto Run＝PROGRAM | Prev |
| :--- | ---: |
|  |  |
| Auto Run Mode： |  |
| PROGRAM／MANUAL | Next |
|  |  |
|  | Change |
| Exit |  |

Setting＂Manual＂，just these parameters＂Memory＂，＂Voltage＂，＂Frequency＂，＂A Hi－Lmt＂， ＂SD－Volt＂，＂SD－Site＂and＂SD－Time＂will be enables．

Setting＂Program＂，besides above parameters，and＂Memory Cycle＂，＂Step＂，＂A Lo－Lmt＂， ＂AP Hi－Lmt＂，＂AP Lo－Lmt＂，＂P Hi－Lmt＂，＂P Lo－Lmt＂，＂PF Hi－Lmt＂，＂PF Lo－Lmt＂，＂Ramp Up＂，＂Delay＂，＂Dwell＂，＂Prompt＂，＂Step Cycle＂and＂Connect＂will be enabled．

## Memory Cycle Setting

When the parameter＂Memory Cycle＂is selected，the display will show as follows．

| Memory Cycle $=\quad \mathbf{1}$ | Prev |
| :--- | :--- |
| Memory Cycle Range ： |  |
| $0-9999 \quad$ Next |  |
| 0 |  |

Setting of＂Cont＂means continuous，and＂ 1 ＂is single operation．For＂ 2 ＂＂＂9999＂setting，it becomes the number of sequence to be repeated for running operation．（Refer to section 4．2．4．2 for Loop Cycle Setting）

## Selecting a Memory

When the parameter＂Memory＂is selected，the display will show as follows．

| Memory $=\square 1$ |  |
| :--- | ---: |
| Name $=$ | Prev |
| Memory Range ： $1-50$ | Next |
| Exit |  |
| emore |  |$\square$.

Two methods may be used to select a Memory．
1．Type in the number of the Memory that you would like to use．As with all of the parameters，once you begin typing a new number，the parameter will blank and the cursor will begin blinking．This indicates that the parameter is being edited．Once a parameter is edited，it is necessary to complete the edit either by pressing the ENTER key to accept the new number or the EXIT key to escape from the edit and return to the original number．
2．Press the＂List＂soft key and scroll the highlighted area to the desired Memory，then press the ENTER key．An example of the list display is as follows：


Once you press the ENTER key，the Memory location and all of its steps will be loaded into the instruments activate memory for use．Once the Memory is loaded，the Perform Test screen will once again be displayed．

## Naming a Memory

At the Memory recall screen，press the＂Name＂soft key．


Exceeding Technology Bariers 領…導．．．．．．．．．．．．．新 70


Use the＂＜＞，＾，$\vee$＂soft keys to navigate through the character map and use the bottom soft key to select a character．The＂$<--$＂key may be used to delete the last character．Press ENTER to save or EXIT to cancel changes．The memory name can be no more than 10 characters in length．

## Selecting a Step

When the parameter＂Step＂is selected，the display will show as follows．


Type in the number of the Step that you would like to use．Once a parameter is edited，it is necessary to complete the edit either by pressing the ENTER key to accept the new number or the EXIT key to escape from the edit and return to the original number．

## Setting of Output Voltage

When the parameter＂Voltage＂is selected，the display will show as follows．

| Voltage $=100.0 \mathrm{~V}$ |  |
| :--- | ---: |
| Voltage Range $0.0-300.0 \mathrm{~V}$ | Prev |
| Voltage Mode：AUTO |  |
| Voltage Mode：HIGH／AUTO | Change |
| Volta |  |
| $\square$ |  |

Setting the voltage mode to be＂AUTO＂，the system will auto judge the voltage range from the setting value of voltage．

Setting the mode to be＂HIGH＂，the voltage range is always set to be high range，and the range of current limit drops to half as comparing the current limit at the low range（Refer to the specification table）．Setting of voltage range may not influence the existing output voltage setting．

## Setting of Output Frequency

When the parameter＂Frequency＂is selected，the display will show as follows．

| Frequency $=60.0 \mathrm{~Hz}$ | Prev <br> Next |
| :---: | :---: |
|  |  |
| Frequency Range ：$45.0-500 \mathrm{~Hz}$ |  |
|  | Exit |

Use numeric key to enter the value then press＂Enter＂softkey to save and escape the parameter setting．

## Setting of Current High Limit and Low limit

When the parameter＂A Hi－Lmt＂is selected，the display will show as follows．

| $\mathrm{A} \mathrm{Hi-Lmt}=0.000 \mathrm{~A}$ | Prev Next |
| :---: | :---: |
|  |  |
| Current High Limit Range ： |  |
| $0.000-8.400 \mathrm{~A}, 0=\mathrm{OFF}$ | Exit |

When the parameter＂A Lo－Lmt＂is selected，the display will show as follows．

| A Lo－Lmt $=0.000 \mathrm{~A}$ | Prev |
| :--- | ---: |
| Current Low Limit Range： |  |
| $0.000-8.400 \mathrm{~A}$ |  |
| Next |  |
| $\square$ |  |

Use numeric key to enter the value then press＂Enter＂softkey to save and escape the parameter setting．

Setting Range of Voltage

| Model | 6705 | 6710 | 6720 | 6730 | 6740 | 6750 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0-150 \mathrm{~V}$（A） | $0.000-4.200$ | $0.000-8.40$ | $0.000-16.80$ | $0.000-25.20$ | $0.000-33.60$ | $0.000-42.00$ |  |
| $0-300 \mathrm{~V}$（A） | $0.000-2.100$ | $0.000-4.20$ | $0.000-8.40$ | $0.000-12.60$ | $0.000-16.80$ | $0.000-21.00$ |  |
| OPT．624（0－600V） |  |  |  |  |  |  |  |
| $0-300 \mathrm{~V}$（A） | $0.000-2.100$ | $0.000-4.20$ | $0.000-8.40$ | $0.000-12.60$ | $0.000-16.80$ | $0.000-21.00$ |  |
| $0-600 \mathrm{~V}$（A） | $0.000-1.050$ | $0.000-2.100$ | $0.000-4.20$ | $0.000-6.30$ | $0.000-8.40$ | $0.000-10.50$ |  |

Note．If the setting value of high limit is 0 ，the function will be displayed．


## Setting of Power High Limit and Low Limit

When the parameter＂P Hi－Lmt＂is selected，the display will show as follows．


When the parameter＂P Lo－Lmt＂is selected，the display will show as follows．


Use numeric key to enter the value then press＂Enter＂softkey to save and escape the parameter setting．

Setting Range of Power

| Model | 6705 | 6710 | 6720 | 6730 | 6740 | 6750 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Power（W） | $0.0-500$ | $0.0-1000$ | $0.0-2000$ | $0.0-3000$ | $0.0-4000$ | $0.0-5000$ |

Note．If the setting value of high limit is 0 ，the function will be displayed．

## Setting of Peak Current High Limit and Low Limit

When the parameter＂AP Hi－Lmt＂is selected，the display will show as follows．


When the parameter＂AP Lo－Lmt＂is selected，the display will show as follows．


Use numeric key to enter the value then press＂Enter＂softkey to save and escape the parameter setting．

Setting Range of Peak Current

| Model | 6705 | 6710 | 6720 | 6730 | 6740 | 6750 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Current（A） | $0.0-5.9$ | $0.0-11.8$ | $0.0-23.7$ | $0.0-35.6$ | $0.0-47.5$ | $0.0-59.3$ |
| OPT．624（0－600V） | $0.0-2.9$ | $0.0-5.9$ | $0.0-11.8$ | $0.0-17.8$ | $0.0-23.7$ | $0.0-29.6$ |

Note．If the setting value of high limit is 0 ，the function will be displayed．

## Setting of Power Factor High Limit and Low Limit

When the parameter＂PF Hi－Lmt＂is selected，the display will show as follows．


When the parameter＂PF Lo－Lmt＂is selected，the display will show as follows．

```
PF Lo-Lmt = 0.000
Power Factor Low Limit Range：
``` \(0.000-1.000\)


Use numeric key to enter the value then press＂Enter＂softkey to save and escape the parameter setting．Note．If the setting value is 0 ，the function will be displayed．

\section*{Setting of Ramp Up Time}

When the parameter＂Ramp Up＂is selected，the display will show as follows．


Use numeric key to enter the value then press＂Enter＂softkey to save and escape the parameter setting．

\section*{Setting of Delay Time}

When the parameter＂Delay＂is selected，the display will show as follows．


Use numeric key to enter the value then press＂Enter＂softkey to save and escape the parameter setting．

\section*{Setting of Dwell Time}

When the parameter＂Dwell＂is selected，the display will show as follows．
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Dwell \(=0.15\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Prev } \\
& \text { Next }
\end{aligned}
\]} \\
\hline & \\
\hline \begin{tabular}{l}
Dwell Time Range： \\
0.1 － 999.9 S ， \(0=\) Constant
\end{tabular} & \\
\hline & Exit \\
\hline
\end{tabular}

\section*{EXTE닫 華儀電子}

Use numeric key to enter the value then press＂Enter＂softkey to save and escape the parameter setting．Setting 0 is continuing test till teat fail or abort．

\section*{Setting of Surge／Drop Voltage}

When the parameter＂SD－Volt＂is selected，the display will show as follows．
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{SD－Volt \(=100.0 \mathrm{~V}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Prev \\
Next
\end{tabular}} \\
\hline & \\
\hline \multirow[t]{2}{*}{Surge／Drop Voltage Range：
\[
0.0-300.0 \mathrm{~V}
\]} & \\
\hline & Exit \\
\hline
\end{tabular}

The function is setting it belongs to surge or drop．Use numeric key to enter the value then press＂Enter＂softkey to save and escape the parameter setting．

\section*{Setting of Surge／Drop Site}

When the parameter＂SD－Site＂is selected，the display will show as follows．


The function is setting the location of Surge／Drop．Use numeric key to enter the value then press＂Enter＂softkey to save and escape the parameter setting．

\section*{Setting of Surge／Drop Time}

When the parameter＂SD－Time＂is selected，the display will show as follows．


The function is setting the puls width of Surge／Drop．Use numeric key to enter the value then press＂Enter＂softkey to save and escape the parameter setting．

\section*{Setting of Surge／Drop Continuous Test}

When the parameter＂SD－Cont．＂selected，the display will show as follows．


The function is setting if Surge／Drop output is continuous or not．When the function is setting to＂ON＂，the trigger will be activated continuously until the test is fail or reset after
"Trig." softkey is pressed. When the setting is " OFF", the trigger will only activated a time after "Trig." softkey is pressed.

For an example, If output voltage is 100 Vrms , output frequency is 50 Hz , Surge/Drop voltage is 60 Vrms , Surge/Drop site is 25 mS , and Surge/Drop time is 1 mS .

If the SD-Cont. is setting to "OFF" and the "Trig." softkwy is only pressed a time, the waveform will be as the right figure.


\section*{Setting of Prompt}

When the parameter "Prompt" is selected, the display will show as follows.
\begin{tabular}{|l|l|l|}
\hline ABCDEFGHI \\
\begin{tabular}{l} 
JKLMNOPQR \\
STUVWXYZ \\
*- SDace
\end{tabular} & Prompt \(=\square\) & Prev \\
Next \\
\hline & Edit \\
Exit \\
\hline
\end{tabular}

The Prompt function allows you to insert a short line of text in a step. The Prompt will appear on the screen before the step is initiated and remains on the screen until the TEST button is pressed. After the TEST button is pressed, the Prompt will clear and the step will initialize.


\section*{EXTEㅌㅓㅏ 華儀電子}

Exceeding Technology Barriers
This screen will only show when scrolling one parameter at a time through the parameter list with＂Prev and Next＂soft keys．Press the＂Edit＂soft key to Edit or insert a Prompt．

To enter a text prompt，use the arrow keys to scroll the highlighted area to the character（or enter a number from the numeric keypad）you wish to use and then press the＂Select＂soft key， the letter or symbol will be inserted at the point where the cursor is flashing．The cursor will then increment to the next position and wait for an additional character insertion．If you make a mistake or want to change the character，press the delete key in the numeric keypad． The cursor will decrement and erase the character．When you have finished editing the prompt press the ENTER key．The prompt can be no more than 10 characters in length．

\section*{Setting of Step Cycle}

When the parameter＂Step Cycle＂is selected，the display will show as follows．


Setting of＂Cont＂means continuous，and＂ 1 ＂is single operation．For＂ 2 ＂～＂ 9999 ＂setting，it becomes the number of sequence to be repeated for running operation．（Refer to section 4．2．4．2 for Loop Cycle Setting）

\section*{Setting of Step Connect}

When the parameter＂Connect＂is selected，the display will show as follows．


This function when turned ON will connect or link the step to the next step．When step 9 connect is turned＂ON＂，it will be linked to the first step of the next memory．For example， memory 1 ，step 9 will be connected to memory 2 ，step1．It is possible to connect all 450 steps together when the connect parameter of all steps has been turned＂ON＂．

If the step connect is turned＂ON＂，the display will show as follows．


\section*{4．2．4 Results Softkey}

Press＂＜more＞＂softkey under the reset condition，then display will show as follows．

or


Using the＂\({ }^{\prime}\)＂，＂Page \(\wedge\)＂or＂Page \({ }^{-}\)＂softkeys to review the last test result．If the system is never executed any test，the display will hold on the rest condition after you press the softkey．

\section*{4．2．5 System Softkey}

Press＂＜more＞＂softkey under the reset condition，then display will show as follows．

\(\downarrow\) Press＂System＂softkey．
\begin{tabular}{|c|c|c|}
\hline Single Step OFF & V Lo－Lmt 0.0 V & \\
\hline Alarm 5 & F Hi－Lmt 500.0 Hz & \\
\hline Contrast 5 & F Lo－Lmt 45．0Hz & \\
\hline Auto V－Adj OFF & Start Angl \(0^{\circ}\) & \\
\hline Power UP OFF
Timer Unit SECOND & \(\begin{array}{lr}\text { Start Angle } \\ \text { Results } & 0^{\circ}{ }^{\circ} \\ \text { LAST }\end{array}\) & Edit \\
\hline Loop Cycle 1 & Surge／Drop OFF & \\
\hline V Hi－Lmt 300．0V & OC Fold OFF & Exit \\
\hline
\end{tabular}

\section*{4．2．5．1 Enter the System Setting Mode}

Press＂Edit＂softkey under system mode，then you can enter the setting mode．
\begin{tabular}{|c|c|c|}
\hline Single Step OFF & V Lo－Lmt 0．0V & \\
\hline Alarm 5 & F Hi－Lmt 500.0 Hz & \\
\hline Contrast 5 & F Lo－Lmt 45．0Hz & \\
\hline Auto V－Adj OFF & \(\begin{array}{ll}\text { Start Angl } \\ \text { Start Angle } & 0^{\circ} \\ 0\end{array}\) & \\
\hline \(\begin{array}{ll}\text { Power UP } & \text { OFF } \\ \text { Timer Unit } & \text { SECOND }\end{array}\) & \(\begin{array}{lr}\text { Start Angle } \\ \text { Results } & 0^{\circ} \\ \text { LAST }\end{array}\) & Edit \\
\hline Loop Cycle 1 & Surge／Drop OFF & \\
\hline V Hi－Lmt 300．0V & OC Fold OFF & Exit \\
\hline
\end{tabular}


Or you can press＂\(へ\)＂or＂\(\checkmark\)＂softkey to select the parameter you want to edit first，then press＂Edit＂softkey to edit it．

\(\square\) Press＂Edit＂softkey．


Use numeric keypad to enter the new number or pressing＂Change＂softkey to change the parameter mode．

\section*{4．2．5．2 System parameter \\ Single Step}

When the parameter is selected，the display will show as follows．


You may turn the Single Step function ON and OFF by pressing the＂Change＂soft key． Accept the change by pressing ENTER or cancel the edit by pressing EXIT．

This function is used to temporarily override the automatic connection feature．When the Single Step function is ON the instrument will pause after each step is completed．To continue the test sequence，press the Test button to execute the next connected step．Each time the Test button is pressed the next connected step will execute．If you press the Reset button before completing all connected steps，it will return you to the original starting step．If a step fails and you wish to continue to the next step，do not press Reset．

\section*{Alarm Volume}

When the parameter is selected，the display will show as follows．


To change the volume of the alarm，type in a numeric value between 0 and 9．Press the ENTER key to accept the new number or the EXIT key to escape from the edit and return to the original number．

The numbers corresponding to the different volume settings are 0 through 9,0 meaning the volume is off，and 9 being the loudest setting．After the number is entered，a momentary alarm chirp will occur to indicate the volume of the new setting．

\section*{LCD Contrast}

When the parameter is selected，the display will show as follows．


To change the Contrast of the display，type in a numeric value between 0 and 9．Press the ENTER key to accept the new number or the EXIT key to escape from the edit and return to the original number．

The numbers corresponding to the different contrast settings are 0 through 9,0 meaning the lightest color of displayed characters and 9 meaning the darkest color of displayed characters． After the number is entered，the display will automatically adjust to the new display setting．

\section*{Power Up}

When the parameter is selected，the display will show as follows．


You may turn the function ON，OFF and LAST by pressing the＂Change＂soft key．Accept the change by pressing ENTER or cancel the edit by pressing EXIT．

When the Power Up function is ON the instrument will auto test after power up．When the

Power Up function is OFF the instrument will return the reset condition after power up．．
When the Power Up function is LAST the display will show the last output after power up．

\section*{Timer Unit}

When the parameter is selected，the display will show as follows．
\begin{tabular}{|l|r|}
\hline Timer Unit \(=\) SECOND & Prev \\
Next \\
Timer Unit Mode： \\
Second，Minute or Hour & Change \\
Exit
\end{tabular}

You may turn the function SECOND ，Minute and Hour by pressing the＂Change＂soft key． Accept the change by pressing ENTER or cancel the edit by pressing EXIT．

\section*{Loop Cycle}

When the parameter is selected，the display will show as follows．


Setting of＂Cont＂means continuous，and＂ 1 ＂is single operation．For＂ 2 ＂\(\sim\)＂ 9999 ＂setting，it becomes the number of sequence to be repeated for running operation．This selected loop rate will then be used as a multiplier to the value of step cycle and memory cycle．

For an example，the Loop Cycle is 2，
Memory 1 ：Memory Cycle＝2
M1－1 ：Connect＝ON，Step Cycle＝2
M1－2 ：Connect＝ON，Step Cycle＝1
M1－3 ：Connect＝ON，Step Cycle＝1
M1－4 ：Connect＝ON，Step Cycle＝3
M1－5 ：Connect＝ON，Step Cycle＝2
M1－6 ：Connect＝ON，Step Cycle＝1
M1－7：Connect＝ON，Step Cycle＝1
M1－8：Connect＝ON，Step Cycle＝1
M1－9：Connect＝ON，Step Cycle＝2
Memory 2 ：Memory Cycle＝3
M2－1 ：Connect＝ON，Step Cycle＝1
M2－2 ：Connect＝ON，Step Cycle＝3

All the test steps as follows．
\(\mathrm{M} 1-1 \rightarrow \mathrm{M} 1-1 \rightarrow \mathrm{M} 1-2 \rightarrow \mathrm{M} 1-3 \rightarrow \mathrm{M} 1-4 \rightarrow \mathrm{M} 1-4 \rightarrow \mathrm{M} 1-4 \rightarrow \mathrm{M} 1-5 \rightarrow \mathrm{M} 1-5 \rightarrow \mathrm{M} 1-6 \rightarrow \mathrm{M} 1-7 \rightarrow \mathrm{M} 1-8 \rightarrow \mathrm{M} 1-9 \rightarrow \mathrm{M} 1-9 \rightarrow\)
\(\mathrm{M} 1-1 \rightarrow \mathrm{M} 1-1 \rightarrow \mathrm{M} 1-2 \rightarrow \mathrm{M} 1-3 \rightarrow \mathrm{M} 1-4 \rightarrow \mathrm{M} 1-4 \rightarrow \mathrm{M} 1-4 \rightarrow \mathrm{M} 1-5 \rightarrow \mathrm{M} 1-5 \rightarrow \mathrm{M} 1-6 \rightarrow \mathrm{M} 1-7 \rightarrow \mathrm{M} 1-8 \rightarrow \mathrm{M} 1-9 \rightarrow \mathrm{M} 1-9 \rightarrow\)
\(\rightarrow \mathrm{M} 2-1 \rightarrow \mathrm{M} 2-2 \rightarrow \mathrm{M} 2-2 \rightarrow \mathrm{M} 2-2 \rightarrow \mathrm{M} 2-1 \rightarrow \mathrm{M} 2-2 \rightarrow \mathrm{M} 2-2 \rightarrow \mathrm{M} 2-2 \quad \rightarrow \mathrm{M} 2-1 \rightarrow \mathrm{M} 2-2 \rightarrow \mathrm{M} 2-2 \rightarrow \mathrm{M} 2-2\)

\section*{Voltage High Limit and Low Limit}

When the High Limit is selected，the display will show as follows．


When the High Limit is selected，the display will show as follows．
\begin{tabular}{|c|c|}
\hline V Lo－Lmt \(=\) 0．0V & Prev \\
\begin{tabular}{c} 
Voltage Low Limit Range \(:\) \\
\(0.0-300.0 \mathrm{~V}\)
\end{tabular} & Next \\
& Exit
\end{tabular}

Use numeric key to enter the value then press＂Enter＂softkey to save and escape the parameter setting．

This feature disallows user to vary the output voltage during RESET and TEST conditions， which may cause to exceed the acceptable range of voltage for any particular DUTs．

\section*{Frequency High Limit and Low Limit}

When the high limit is selected，the display will show as follows．


When the low limit is selected，the display will show as follows．


Use numeric key to enter the value then press＂Enter＂softkey to save and escape the parameter setting．

This feature disallows user to vary the output frequency during RESET and TEST conditions， which may cause to exceed the acceptable range of frequencies for any particular DUTs．

\section*{Start Angle and End Angle}

When the＂Start Angle＂is selected，the display will show as follows．
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Start Angle＝ \(\square\) \\
Start Angle Range： \(0-359^{\circ}\)
\end{tabular} & \begin{tabular}{l}
Prev \\
Next
\end{tabular} \\
\hline
\end{tabular}

When the＂End Angle＂is selected，the display will show as follows．


Use numeric key to enter the value then press＂Enter＂softkey to save and escape the parameter setting．

\section*{Results}

When the parameter is selected，the display will show as follows．


When the Results parameter is highlighted，you may use the＂Change＂soft key to select what type of results you would preferred displayed at the end of a test or sequence of connected steps．The available selections are：All，P／F and Last．Press the ENTER key to accept the new setting or the EXIT key to cancel and return to the original setting．

When All is selected，a Results summary screen will be displayed at the end of the test or sequence of connected steps，displaying the results of all of the steps．The Results summary screen will appear as follows：


When P／F is selected，a Pass or Fail screen will be displayed at the end of the test．The Pass and Fail screens will appear as follows：

\section*{PASS}


When Last is selected，the results of the last step performed will be displayed on the Perform Tests screen．There will not be a change in appearance or special screen displayed in this mode．


\section*{Surge／Drop Mode（Surge／Drop）}

Setting on，the test parameter＂SD－Volt＂，＂SD－Site＂and＂SD－Time＂will be enabled．Setting off，the test parameter＂SD－Volt＂，＂SD－Site＂and＂SD－Time＂will be disabled．


\section*{Over Current Fold Back（OC－Fold）}

Setting On，when output current is higher than Programmable Parameters＂A－HI＂current setting current value，it will keep constant A－HI setting current value output．


\section*{4．3 Description of Test}

\section*{4．3．1 If the setting of the test parameter＂AUTO RUN＂is＂PROGRAM＂．}

If the setting of the test parameter＂AUTO RUN＂is＂PROGRAM＂，the Rotary Knob on the panel will be disabled．


When you press＂TEST／RESET＂key to activate the test，the display will show as follows．
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{lrr}
\hline M 1－1 & 0.0 s & F \\
Dwell P： & 0.00 W & A
\end{tabular} & \[
\begin{array}{cc:c}
\hline 50.0 \mathrm{~Hz} & \text { AP }: & 0.0 \mathrm{~A} \\
0.000 \mathrm{~A} & \mathrm{PF}: & 0.000 \\
\hline
\end{array}
\] & Meter \\
\hline  &  & \begin{tabular}{l}
Cycle \\
Trig．
\end{tabular} \\
\hline
\end{tabular}

You can monitor the value of Frequency，Peak Current，Power or Power factor by pressing the ＂Meter＂softkey when the test is activating．Or you can monitor the times of Step，Memory and loop cycle by pressing the＂cycle＂softkey．

\section*{4．3．2 If the setting of the test parameter＂AUTO RUN＂is＂MANUAL＂．}

If the setting of the test parameter＂AUTO RUN＂is＂MANUAL＂，the Rotary Knob on the panel will be enabled．

Under reset condition，you can adjust the setting value of voltage，current or frequency by the Rotary Knob and the display will show as follows．


When you press＂TEST／RESET＂key to activate the test，the display will show as follows．


In the meanwhile，you can adjust the output value of voltage or frequency by the Rotary Knob．

Whenever it is under reset condition or testing condition，you can monitor the value of

Frequency，Peak Current，Power or Power factor by pressing the＂Meter＂softkey．Or you can monitor the times of Step，Memory and loop cycle by pressing the＂cycle＂softkey．

\section*{4．3．3 Description of Test Softkeys}
＂Meter＂：You can select the parameter you want to monitor by pressing＂Meter＂softkey．
＂Auto＂：It can be set to be＂AUTO＂or＂HIGH＂． If the setting is＂AUTO＂mode，the system will auto judge the voltage mode belongs to low range or high range from the setting value of voltage．If it is ＂HIGH＂mode，it is always set to be high range．
＂Cycle＂：Monitoring the times of Step，Memory and loop cycle．

＂Trig．＂：If the setting of system parameter＂Surge／Drop＂is ON，the softkey will be enabled．After you finished all the set about Surge／Drop function，the trigger can be activated by pressing＂Trig．＂softkey．

Note．Each trigger must be separated at least 200 ms then it can be activated．

\section*{4．4 Displayed Messages}

Below are the descriptions of error messages that may occur at abnormal conditions： At any abnormal conditions，there are several error messages to be indicated on the display． Thereafter the output will be disabled and the alarm will sound．The TEST／RESET LED Indicator will also light up at the same time．If the indicator is blinking that shows an abnormal operation is encountered，thereby the output voltage will be cut off immediately．By pressing the TEST／RESET key will reset the audible alarm，an error message is indicated．

\section*{WARNING}

All error messages are occurred at any abnormal conditions and therefore must be recorded．Check the cause of error to ensure the problem is eliminated before restarting the operation，or contact EXTECH Electronics Co．Ltd．or our official distributors for further assistance．

\section*{Over Setting Current Protection（HI－A）}

If the reading of output current has exceeded the setting of current，the display will indicate ＂HI－A＂and the alarm will sound．Consequently，the TEST／RESET LED indicator will blink．

\section*{Over Current Protection（OCP）}

If the output current has exceeded \(105 \%\) of maximum current rating or output circuit short for 1 second，the display will indicate＂OCP＂and the alarm will sound．Consequently，the TEST／RESET LED indicator will blink．

\section*{Over Temperature Protection（OTP）}

If the heat sink of the instrument itself has exceeded \(130^{\circ} \mathrm{C}\) ，the display will indicate＂OTP＂． This shows that the heat sink is overheated and thus the alarm will sound．Consequently，the TEST／RESET LED indicator will blink．

\section*{Over Voltage Protection（OVP）}

If the output voltage has exceeded 5 V of setting voltage at \(0-150 \mathrm{~V}\) range or has exceeded 10 V of setting voltage at \(0-300 \mathrm{~V}\) range，the display will indicate＂OVP＂and the alarm will sound． Consequently，the TEST／RESET LED indicator will blink．

Exceeding Technology Barriers

\section*{CHAPTER 5．INTERFACE GPIB AND RS－232}

\section*{Bus Remote Interface RS－232／GPIB}

This chapter provides information on the proper use and configuration of bus remote interface for RS232 and GPIB interface，whereby both interfaces are using different command lists． These interfaces are optional on 6700 Series AC Power Source．

\section*{5．1 RS－232 Interface}

The RS232 connection is configured as follows for a 9 pins Serial Port interface．


The COM port should have the following configuration： 9600 baud， 8 data bits， 1 stop bit，no polarity，and etc．This interface does not support XON／XOFF protocol or any hardware handshaking．The controller should be configured to ignore the Handshaking Lines DTR（PIN 4），DSR（PIN 6）and RTS（PIN 9）．If the port cannot be configured through software to ignore the lines，the handshake lines should be then jumped together in two different sets．The PIN 4 and 6 jumped together while PIN 7 and 8 jumped together at the controller end of the cable．

When sending command over the RS232 bus the AC Power Source will send a response string of 06 Hex or 6 decimal and the Acknowledge（ACK）ASCII control code if the transfer was recognized and completed by the AC Power Source．If there is an error with the command string that is sent，the AC Power Source will respond with 15 Hex or 21 decimal and the Not Acknowledge（NAK）ASCII code．The ACK or NAK response allows for software handshaking，in order to monitor and control data flow．When requesting data from the AC Power Source，it will automatically send the data back to the controller input buffer．The controller input buffer will accumulate data being sent from the AC Power Source including the ACK and NAK response strings，until the controller has read it．When the strings or command has been sent，it must be terminated with \(\mathbf{L F}=(\mathbf{0 A H})\) ，such as＂TEST＂\(+\mathbf{L F}\) ．

\section*{5．2 GPIB Interface}

This interface of a device connected to the BUS is specified by its interface functions．These functions provide the means for a device to receive，process，and send messages over the bus． The interface functions are listed in the chart below．
\begin{tabular}{|c|c|}
\hline \multirow{12}{*}{IEEE－488 INTERFACE} & Complete Handshake Capability \\
\hline & Talker／Listener Capability \\
\hline & Service Request Capability \\
\hline & No Remote／Local Capability \\
\hline & No parallel poll Capability \\
\hline & No Device Clear Capability \\
\hline & No Device Trigger Capability \\
\hline & No Controller Capability \\
\hline & 3 state driver \\
\hline & Setting of test condition and parameters \\
\hline & Reading of display status \\
\hline & Reading of measurement results \\
\hline Controllable Item & Test／Reset Control \\
\hline DATA CODES & ASCII \\
\hline
\end{tabular}

\section*{GPIBAddress}

All the above commands are required by the IEEE－488．2 GPIB Interface BUS．The factory default address of the 6700 Series AC Power Source is set to 8 ．

\section*{5．3 Command List}

\section*{Basic Commands}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Panel Key Page } & \multicolumn{1}{c|}{ COMMAND } & & UNIT \\
\hline TEST & TEST & Power On & \\
\hline RESET & RESET & Power Off & \\
\hline & & \begin{tabular}{l} 
MEMORY，STEP，STATUS，FREQ，VOLT，CUR \\
R，WATT，CURR PEAK，PF，TIMER
\end{tabular} & \\
\hline Testing meters data & TD？ & TDFREQ？ & \(45.0 \sim 500.0\) \\
\hline Testing frequency meter & TDVOLT？ & \(0.0 \sim 300.0\) & Hz \\
\hline Testing voltage meter & TDCURR？ & \(0.000 \sim 42.00\) & V \\
\hline Testing current meter & \(0.0 \sim 59.0\) & A \\
\hline Testing current peak meter & TDAP？ & \(0.0 \sim 5000\) & A \\
\hline Testing power meter & TDP？ & \(0.000 \sim 1.000\) & W \\
\hline Testing pf meter & TDPF？ & \(0.0 \sim 999.9\) & \(\mathrm{~s} / \mathrm{m} / \mathrm{h}\) \\
\hline Testing timer meter & TDTIMER？ & \begin{tabular}{l} 
X＝0－4， \\
\hline SELECT METER X \\
METER X
\end{tabular} & METER？ \\
\hline SELECT METER？ & SDTRG & Trigger one time Surge／Drop & \\
\hline SURGE／DROP TRIGGER & & & \\
\hline STEP CYCLE？ & STEPCYCLE？ & & \\
\hline MEMORY CYCLE？ & MEMORYCYCLE？ & & \\
\hline LOOP CYCLE？ & LOOPCYCLE？ & & \\
\hline
\end{tabular}

Exceeding Technology Bariers 領…導…創．．．新
Program Commands
\begin{tabular}{|c|c|c|c|}
\hline Program Step Page & COMMAND & & UNIT \\
\hline AUTO：RUN X & AR X & X＝0～1， \(0=\) PROGRAM， \(1=\mathrm{MANUAL}\) & \\
\hline AUTO：RUN？ & AR？ & 0～1 & \\
\hline MEMORY：CYCLE XXXX & MC XXXX & XXXX＝0～9999，0＝Contine，1＝OFF & \\
\hline MEMORY：CYCLE？ & MC？ & 0－9999 & \\
\hline MEMORY X & MEMORY X & X＝1－50 & \\
\hline MEMORY？ & MEMORY？ & 1－50 & \\
\hline STEP X & STEP X & \(\mathrm{X}=1-9\) & \\
\hline STEP？ & STEP？ & 1－9 & \\
\hline VOLTAGE XXXX & VOLT XXXX & XXXX＝0．0～300．0 & V \\
\hline VOLTAGE？ & VOLT？ & 0．0～300．0 & V \\
\hline RANG X & RANG X & X＝0－1，0＝HIGH， \(1=\) AUTO & \\
\hline RANG？ & RANG？ & 0－1 & \\
\hline FREQUNCY XXXX & FREQ XXXX & XXXX＝45．0～500 & Hz \\
\hline FREQUNCY？ & FREQ？ & 45．0～500 & Hz \\
\hline A：HI XXXX & AHI XXXX & XXXX＝0．000～42．00 & A \\
\hline A：HI？ & AHI？ & 0．000～42．00 & A \\
\hline A：LO XXXX & ALO XXXX & XXXX＝0．000～42．00 & A \\
\hline A：LO？ & ALO？ & 0．000～42．00 & A \\
\hline AP：HI XXXX & APHI XXXX & XXXX＝0．0～59．0 & A \\
\hline AP：HI？ & APHI？ & 0．0～59．0 & A \\
\hline AP：LO XXXX & APLO XXXX & XXXX＝0．0～59．0 & A \\
\hline AP：LO？ & APLO？ & 0．0～59．0 & A \\
\hline POWER：HI XXX．X & PHI XXXX & XXXX＝0．0～5000 & W \\
\hline POWER：HI？ & PHI？ & \(0.0 \sim 5000\) & W \\
\hline POWER：LO XXX．X & PLO XXXX & XXXX＝0．0～5000 & W \\
\hline POWER：LO？ & PLO？ & 0．0～5000 & W \\
\hline PF：HI X．XXX & PFHI XXXX & XXXX＝0．000～1．000 & \\
\hline PF：HI？ & PFHI？ & 0．000～1．000 & \\
\hline PF：LO XXXX & PFLO XXXX & XXXX＝0．000～1．000 & \\
\hline PF：LO？ & PFLO？ & 0．000～1．000 & \\
\hline RAMP UP：TIME XXXX & RAMPUP XXXX & XXX．X＝0．1～999．9 & S \\
\hline RAMP UP：TIME？ & RAMPUP？ & \(0.1 \sim 999.9\) & s \\
\hline DELAY：TIME XXXX & DELAY XXXX & XXX． \(\mathrm{X}=0.1 \sim 999.9\) & \(\mathrm{s} / \mathrm{m} / \mathrm{h}\) \\
\hline DELAY：TIME？ & DELAY？ & \(0.1 \sim 999.9\) & \(\mathrm{s} / \mathrm{m} / \mathrm{h}\) \\
\hline DWELL：TIME XXXX & DWELL XXXX & XXXX＝0．0～999．9，0＝Const & \(\mathrm{s} / \mathrm{m} / \mathrm{h}\) \\
\hline DWELL：TIME？ & DWELL？ & 0．0～999．9 & \(\mathrm{s} / \mathrm{m} / \mathrm{h}\) \\
\hline RAMP DOWN：TIME XXXX & RAMPDOWN XXXX & \begin{tabular}{l}
\[
X X X . X=0.1 \sim 999.9
\] \\
OPTION COMMAND
\end{tabular} & S \\
\hline RAMP DOWN：TIME？ & RAMPDOWN？ & 0．1～999．9 & S \\
\hline SD－VOLT XXXX & SDVOLT XXXX & XXXX＝0．0～300．0 & V \\
\hline SD－VOLT？ & SDVOLT？ & \(0.0 \sim 300.0\) & V \\
\hline SD－SITE XXXX & SDLT XXXX & XXXX＝0．0～99．9 & ms \\
\hline SD－SITE？ & SDLT？ & 0．0～99．9 & ms \\
\hline SD－TIME XXXX & SDHT XXXX & XXXX＝0．0～25．0 & ms \\
\hline SD－TIME？ & SDHT？ & 0．0～25．0 & ms \\
\hline SD－CONT XXXX & SDCT XXXX & \(\mathrm{X}=0 \sim 1, \quad 0=O F F, 1=O N\) & \\
\hline SD－CONT？ & SDCT？ & 0～1 & \\
\hline PROMPT：DELETE & PTD & & \\
\hline PROMPT XXXXXXXXXXX & PT XXXX & XXXX＝1～30 BYTES & \\
\hline PROMPT？ & PT？ & & \\
\hline STEP：CYCLE XXXX & SC XXXX & XXXX＝0～9999，0＝Cont，1＝OFF & \\
\hline STEP：CYCLE？ & SC？ & 0－9999 & \\
\hline CONNECT X & CONNECT X & \(\mathrm{X}=0 \sim 1, \quad 0=O F F, 1=0 \mathrm{~N}\) & \\
\hline CONNECT？ & CONNECT？ & 0～1 & \\
\hline
\end{tabular}

System Commands
\begin{tabular}{|c|c|c|c|}
\hline System Page & COMMAND & & UNIT \\
\hline SINGLE STEP X & SS X & \(\mathrm{X}=0 \sim 1, \quad 0=O F F, 1=O N\) & \\
\hline SINGLE STEP？ & SS？ & 0～1 & \\
\hline ALARM X & ALARM X & X＝0～9，0＝OFF，9＝high & \\
\hline ALARM？ & ALARM？ & 0～9 & \\
\hline CONTRAST X & CONTRAST X & X＝1～9，9＝high & \\
\hline CONTRAST？ & CONTRAST？ & 1～9 & \\
\hline POWER：UP X & PUP X & \(\mathrm{X}=0-2,0=O F F, 1=O N, 2=\) LAST & \\
\hline POWER：UP？ & PUP？ & 0－2 & \\
\hline TIME：UNIT X & TUNIT X & X \(=0-2,0=\) Second， \(1=\) Minute， \(2=\) Hour & \\
\hline TIME：UNIT？ & TUNIT？ & 0－2 & \\
\hline LOOP：CYCLE XXXX & LC XXXX & XXXX＝0～9999，0＝Cont，1＝OFF & \\
\hline LOOP：CYCLE？ & LC？ & 0－9999 & \\
\hline VOLT：HI XXXX & VHI XXXX & XXXX＝0．0～300．0 & V \\
\hline VOLT：HI？ & VHI？ & \(0.0 \sim 300.0\) & V \\
\hline VOLT：LO XXXX & VLO XXXX & XXXX＝0．0～300．0 & V \\
\hline VOLT：LO？ & VLO？ & \(0.0 \sim 300.0\) & V \\
\hline FREQ：HI XXXX & FHI XXXX & XXXX＝45．0～500．0 & Hz \\
\hline FREQ：HI？ & FHI？ & 45．0～500．0 & Hz \\
\hline FREQ：LO XXXX & FLO XXXX & XXXX＝45．0～500．0 & Hz \\
\hline FREQ：LO？ & FLO？ & 45．0～500．0 & Hz \\
\hline START ANGLE XXXX & SAG XXXX & XXXX＝0－359 & － \\
\hline START ANGLE？ & SAG？ & 0－359 & 。 \\
\hline END ANGLE XXXX & EAG XXXX & XXXX \(=0-359\) & － \\
\hline END ANGLE？ & EAG？ & 0－359 & 。 \\
\hline RESULTS X & RESULTS X & \(\mathrm{X}=0-2,0=A L L, 1=P / F, 2=L A S T\) & － \\
\hline RESULTS？ & RESULTS？ & 0－2 & － \\
\hline SURGE DROP X & SD X & \(\mathrm{X}=0 \sim 1, \quad 0=O F F, 1=O N\) & \\
\hline SURGE DROP？ & SD？ & 0～1 & \\
\hline OC FOLD X & OF X & \(\mathrm{X}=0 \sim 1, \quad 0=O F F, 1=O N\) & \\
\hline OC FOLD？ & OF？ & 0～1 & \\
\hline
\end{tabular}

Exceeding Technology Bariers 領…導…創．．．新
IEEE 488．2 Common Commands
\begin{tabular}{|c|c|c|}
\hline Command & Description & Acknowledgement \\
\hline ＊IDN？ & Identification Query & Company，Model Number，Serial Number，Firmware Revision \\
\hline ＊RST & Reset Command & \\
\hline ＊TST？ & Self－Test Query & 00H＝OK \\
\hline & & 01H＝TEST EEPROM ERROR \\
\hline ＊CLS & Clear Status Command & Clear Standard Event Status Register \\
\hline & & Clear Service Request Register \\
\hline ＊OPC & Operation Complete Command & When TEST command ok setting ESR BIT0 \(=1\) \\
\hline ＊OPC？ & Operation Complete Query & \\
\hline ＊WAI & Wait for next command & \\
\hline ＊ESR？ & Standard Event Status Register Query & BIT \(0,01 \mathrm{H},(1) \quad\) Operation Complete \\
\hline & & BIT 1 ，02H，（2）Not Used \\
\hline & & BIT \(2,04 \mathrm{H},(4) \quad\) Query Error \\
\hline & & BIT 3 ，08H，（8）Device Error \\
\hline & & BIT \(4,10 \mathrm{H},(16) \quad\) Execution Error \\
\hline & & BIT \(5,20 \mathrm{H},(32) \quad\) Command Error \\
\hline & & BIT \(6,40 \mathrm{H},(64) \quad\) Not Used \\
\hline & & BIT \(7,80 \mathrm{H},(128)\) Power On \\
\hline \[
\begin{aligned}
& \text { *ESE } \\
& \text { XXX } \\
& \hline
\end{aligned}
\] & Standard Event Status Enable Command & value \(=0 \sim 255\) \\
\hline ＊ESE？ & Standard Event Status Enable Query & 0－255 \\
\hline ＊STB？ & Read Status Byte Query & BIT \(0,01 \mathrm{H}\) ，（1）Not Used \\
\hline & & BIT \(1,02 \mathrm{H}\) ，（2）Not Used \\
\hline & & BIT 2，04H，（4）Not Used \\
\hline & & BIT 3，08H，（8）Not Used \\
\hline & & BIT 4，10H，（16）Message Available \\
\hline & & BIT 5，20H，（32）Standard Event （ESB） \\
\hline & & BIT 6，40H，（64）Request Service （MSS） \\
\hline & & BIT 7，80H，（128）Not Used \\
\hline \[
\begin{aligned}
& \text { *SRE } \\
& \text { XXX }
\end{aligned}
\] & Service Request Enable & value \(=0 \sim 255\) \\
\hline ＊SRE？ & Service Request Enable Query & 0－255 \\
\hline ＊PSC X & Power－On Status & value \(=0 / 1\) \\
\hline ＊PSC？ & Power－On Status Query & 0，1 \\
\hline
\end{tabular}

\section*{CHAPTER 6．DESCPIPTION OF APPLICATION}

\section*{6．1 Remote Interface}

The rear panel connector of 6700 Series AC Power Source provides output signals to remotely monitor PASS，FAIL，and PROCESSING conditions． 6700 Series AC Power Source also provide an optional remote input interface and thus can control any test operation via remote The 9－pin D－type connector signals for Test，Reset，and 7 memories（M1～M7）input control signal．PLC remote function will be activated once the PLC Remote setting from SYSTEM setup parameter is turned on．



Signal Output

Signal Input（Option）

\section*{Signal Input and Storage}

Upon turning on the PLC Remote setting，the TEST／RESET Indicator will be lit and the buzzer will beep twice before return to RESET condition，when any key on the front panel is pressed． In fact，whenever there is an abnormal output detected，it can be reset by pressing the ＂OUTPUT／RESET＂key from the front panel or the Reset button from the PLC Remote and return to RESET condition．

TEST Connect between PIN 3 and PIN 5
RESET Connect between PIN 2 and PIN 5

\section*{Memories Input Control}

Memories Input Control can be achieved by using Normally Open（N．O）Momentary Button and the connection as：
\begin{tabular}{|c|c|c|c|}
\hline & PIN 1 & Pin 9 & Pin 8 \\
\hline M1 & OFF & OFF & ON \\
\hline M2 & OFF & ON & OFF \\
\hline M3 & OFF & ON & ON \\
\hline
\end{tabular}

Exceeding Technology Bariers 領．．．導．．．創 \(\cdot\) •新
\begin{tabular}{|c|c|c|c|}
\hline M4 & ON & OFF & OFF \\
\hline M5 & ON & OFF & ON \\
\hline M6 & ON & ON & OFF \\
\hline M7 & ON & ON & ON \\
\hline
\end{tabular}

For an example，
Memory 3 （M3）Connect PIN 8 and PIN 9 with a series diode（ex．D4148）at each pin and the joint point is connected to PIN 5.
Note：PIN 5 is Common of input signal（COM）．

\section*{Signal Output}

The rear panel connector provides output signals to remotely monitor PASS，FAIL，and PROCESSING conditions．Below is a listing that indicates what conditions activate each pin． When a terminal becomes active the relay closes thereby allowing the external voltage to operate an external device．
\begin{tabular}{ll} 
PASS & Connect between PIN 1 and PIN 2. \\
FAIL & Connect between PIN 3 and PIN 4. \\
PROCESSING & Connect between PIN 5 and PIN6．
\end{tabular}

The following describes how the relays operate for each test condition．

PROCESSING－The relay contact closes the connection between pin（5）and pin（6） while AC Source is performing a test．The connection is opened at the end of the test．

FAIL－The relay contact closes the connection between pin（3）and pin（4）after detecting that the item under test failed any test．The connection is opened when the next test is initiated or the reset function activated．

PASS－The relay contact closes the connection between pin（1）and pin（2）after detecting that the item under test failed any test．The connection is opened when the next test is initiated or the reset function activated．

Note：To avoid any accident to be happened，the remote must be kept and handled by the assigned person in charge only．

\section*{CHAPTER 7．CALIBRATION}

EXTECH offers a standard one－year manufacture＇s warranty．This warranty can be extended an additional four years provided that the instrument is returned each year to Extech Electronics Co．，Ltd．for it＇s annual calibration．In order to be eligible for the extended warranty instruments must be returned to Extech Electronics Co．，Ltd．for calibration service at least once every twelve months．

Follow calibration is an example for model 6710.

\section*{7．1 Enter The Calibration Mode}

Press and hold the calibration key on the rear panel with a pen，pencil，or small screwdriver while powering ON the 6700 ．The 6700 enters calibration mode after the power on sequence is complete．The initial calibration screen will appear as follows：
\begin{tabular}{|lr|lr|r|}
\hline \multicolumn{4}{|c|}{ CALIBRATION } & \\
\hline Volt & 150.0 V & A－peak & 5.6 A & \\
\hline Volt & 300.0 V & & \\
Curr & 3.500 A & & \\
Curr & 8.00 A & & \\
Power & 350.0 W & & \\
Power & 1000 W & & \\
\hline
\end{tabular}

Use＂ ＂＂or＂～＂softkey to scroll the highlighted area to the desired calibration point，．Then Press＂Select＂softkey to start the calibration．

\section*{7．2 Calibration points}

Use＂\(入\)＂or＂ ～＂softkey to scroll the highlighted area to the desired calibration point． Then Press＂Select＂softkey to start the calibration．

\section*{Calibration of AC 150．0V Low Voltage Range}


Follow above prompt to activate the calibration．After the calibration is activated，the screen will change to the text indicated as follows：


Read the measurement from your standard meter and enter it using the numeric keypad．You may now store the new calibration number by pressing the＂ENTER＂softkey or cancel by pressing the＂Esc＂softkey．

If the calibration is completed，the display will forward to the next calibration point．

Calibration of AC 300．0V Low Voltage Range


Follow above prompt to activate the calibration．After the calibration is activated，the screen will change to the text indicated as follows：


Read the measurement from your standard meter and enter it using the numeric keypad．You may now store the new calibration number by pressing the＂ENTER＂softkey or cancel by pressing the＂Esc＂softkey．

If the calibration is completed，the display will forward to the next calibration point．

Calibration of AC 3．500A Low Current Range
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ CALIBRATION } \\
Connect the \(35 \Omega\) load series with \\
3．500AAC current meter from \\
output L to N． & \\
Press TEST to calibrate process． & \\
Press Esc to cancel． & \\
Psc & \\
\hline
\end{tabular}

Follow above prompt to activate the calibration．After the calibration is activated，the screen will change to the text indicated as follows：


Read the measurement from your standard meter and enter it using the numeric keypad．You may now store the new calibration number by pressing the＂ENTER＂softkey or cancel by pressing the＂Esc＂softkey．

If the calibration is completed，the display will forward to the next calibration point．

\section*{Calibration of AC 8．000A High Current Range}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ CALIBRATION } \\
Connect the \(13 \Omega\) load series with \\
8．00AAC current meter from \\
output L to N． & \\
Press TEST to calibrate process． & \\
Press Esc to cancel． & \\
Pres & \\
\hline
\end{tabular}

Follow above prompt to activate the calibration．After the calibration is activated，the screen will change to the text indicated as follows：

\begin{tabular}{|c|c|}
\hline CALIBRATION & \multirow[t]{2}{*}{\[
\left|\begin{array}{l}
\text { Volt } \\
\text { Volt }
\end{array}\right|
\]} \\
\hline Enter standard current reading．
\[
\text { Current }=\square \mathrm{A}
\] & \\
\hline & Enter \\
\hline Press Esc to Cancel． & Esc \\
\hline
\end{tabular}

\section*{EXTE닫 華儀電子}

Exceeding Technology Barriers
Read the measurement from your standard meter and enter it using the numeric keypad．You may now store the new calibration number by pressing the＂ENTER＂softkey or cancel by pressing the＂Esc＂softkey．

If the calibration is completed，the display will forward to the next calibration point．

Calibration of 350．0W Low Power Range
\begin{tabular}{|l|l|l|}
\hline \multicolumn{4}{|c|}{ CALIBRATION } \\
\hline Connect the \(35 \Omega\) load series with & & \\
\(350.0 W\) power meter from & & \\
output L to N． & & \\
Press TEST to calibrate process． & \\
Press Esc to cancel． & \\
\hline
\end{tabular}

Follow above prompt to activate the calibration．After the calibration is activated，the screen will change to the text indicated as follows：


Read the measurement from your standard meter and enter it using the numeric keypad．You may now store the new calibration number by pressing the＂ENTER＂softkey or cancel by pressing the＂Esc＂softkey．

If the calibration is completed，the display will forward to the next calibration point．

Calibration of 1000W High Power Range


Follow above prompt to activate the calibration．After the calibration is activated，the screen will change to the text indicated as follows：


Read the measurement from your standard meter and enter it using the numeric keypad. You may now store the new calibration number by pressing the "ENTER" softkey or cancel by pressing the "Esc" softkey.

If the calibration is completed, the display will forward to the next calibration point.

\section*{Calibration of AC11.0A High Peak Current Range}


Follow above prompt to activate the calibration. After the calibration is activated, the screen will change to the text indicated as follows:


Read the measurement from your standard meter and enter it using the numeric keypad. You may now store the new calibration number by pressing the "ENTER" softkey or cancel by pressing the "Esc" softkey.

If the calibration is completed, the display will forward to the next calibration point.
\(\qquad\)
Note ：Reference for Calibration

\section*{Standard}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Calibration Item} & Unit & 6705 & 6710 & 6720 & 6730 & 6740 & 6750 \\
\hline Low Voltage Range & Calibration points & V & 150.0 & 150.0 & 150.0 & 150.0 & 150.0 & 150.0 \\
\hline High Voltage Range & Calibration points & V & 300.0 & 300.0 & 300.0 & 300.0 & 300.0 & 300.0 \\
\hline \multirow[t]{2}{*}{Low Current Range} & Calibration points & A & 3.500 & 3.500 & 3.500 & 3.500 & 3.500 & 3.000 \\
\hline & Resistance & \(\Omega\) & 35 & 35 & 35 & 35 & 35 & 35 \\
\hline \multirow[t]{2}{*}{High Current Range} & Calibration points & A & 4.00 & 8.00 & 16.00 & 25.00 & 33.00 & 42.00 \\
\hline & Resistance & \(\Omega\) & 25 & 13 & 7 & 4 & 3.5 & 2 \\
\hline \multirow[t]{2}{*}{Low Power Range} & Calibration points & W & 350.0 & 350.0 & 350.0 & 350.0 & 350.0 & 300.0 \\
\hline & Resistance & \(\Omega\) & 35 & 35 & 35 & 35 & 35 & 35 \\
\hline \multirow[t]{2}{*}{High Power Range} & Calibration points & W & 500.0 & 1000 & 2000 & 3000 & 4000 & 5000 \\
\hline & Resistance & \(\Omega\) & 25 & 13 & 7 & 4 & 3.5 & 2.5 \\
\hline \multirow[t]{2}{*}{High Peak Current Range} & Calibration points & A & 5.0 & 11.0 & 22.0 & 33.0 & 45.0 & 57.0 \\
\hline & Resistance & \(\Omega\) & 25 & 13 & 7 & 4 & 3.5 & 1.5 \\
\hline
\end{tabular}

\section*{Opt． 624 Output 0 －600V}

If you order OPT． 624 function，the calibration point of calibration item ：＂Low Voltage＂，＂High Voltage＂，＂Low Current＂，＂High Current＂，and＂High Peak Current＂range will be changed follow below from the original points．
\begin{tabular}{|l|l|c|c|c|c|c|c|c|}
\hline Calibration Item & Unit & \(\mathbf{6 7 0 5}\) & \(\mathbf{6 7 1 0}\) & \(\mathbf{6 7 2 0}\) & \(\mathbf{6 7 3 0}\) & \(\mathbf{6 7 4 0}\) & \(\mathbf{6 7 5 0}\) \\
\hline Low Voltage Range & Calibration points & V & 300.0 & 300.0 & 300.0 & 300.0 & 300.0 & 300.0 \\
\hline \begin{tabular}{l} 
High Voltage \\
Range
\end{tabular} & Calibration points & V & 600.0 & 600.0 & 600.0 & 600.0 & 600.0 & 600.0 \\
\hline \begin{tabular}{l} 
Low Current \\
Range
\end{tabular} & Calibration points & A & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
\hline Hesistance & \(\Omega\) & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline \begin{tabular}{l} 
High Current \\
Range
\end{tabular} & Calibration points & A & 2.00 & 4.00 & 8.00 & 12.00 & 16.00 & 21.0 \\
\hline & Resistance & \(\Omega\) & 50 & 25 & 13 & 7 & 4 & 4 \\
\hline \begin{tabular}{l} 
High Peak Current \\
Range
\end{tabular} & Calibration points & A & 2.0 & 5.0 & 11.0 & 16.0 & 22.0 & 29.0 \\
\cline { 2 - 9 } & Resistance & \(\Omega\) & 50 & 25 & 13 & 7 & 4 & 3 \\
\hline
\end{tabular}

Opt． 623 Low Range Meter Resolution 0．1mA／0．01W for 6705 ／ 6710
If you order OPT． 623 function 6700 Series AC Power Source will add two calibration items follow below．
\begin{tabular}{|l|l|c|c|c|}
\hline Calibration Item & Unit & \(\mathbf{6 7 0 5}\) & \(\mathbf{6 7 1 0}\) \\
\hline Current Range & Calibration points & mA & 350.0 & 350.0 \\
\cline { 2 - 5 } & Resistance & \(\Omega\) & 350 & 350 \\
\hline \multirow{2}{*}{ Power Range } & Calibration points & W & 35.00 & 35.00 \\
\cline { 2 - 6 } & Resistance & \(\Omega\) & 350 & 350 \\
\hline
\end{tabular}```


[^0]:    ＊Product specifications are subject to change without notice．

