The Flagship

DC Electronic
L o a d

Mulfifunctional Electronic Load PLZ-5W Series

Operation Voltage : 1 V to 150 V (from 0.05 V)
High Speed Slew Rate : $60 \mathrm{~A} / \mu \mathrm{s}$
Arbitrary I-V characteristics : Installed "ARB mode"
Parallel Operation Feature : The total current and power capacities can be increased to the maximum of
$10.8 \mathrm{~kW}(\mathbf{2 1 6 0} \mathrm{~A})$ by connecting the booster units.
The Color Display is adopted to improve the visibility !
Various Communication Interfaces : LAN (LXI compliant), USB, RS232C, GPIB (Option), External Analog Control
Improved Sequence Feature (Maximum 10000 steps)

The New Flagship model is born!

Succeeding with the advanced technology, introducing the new standard of Electronic Load!

High-Speed Response / Communication, Large-Scale System

The PLZ-5W Series is the high performance electronic load that took over the superb operability of the former model, "PLZ-4W", adopting with a high visibility of color display (LCD). The PLZ-5W Series is complied with the low operation voltage from the minimum of 1 V up to the maximum voltage of 150 V and it equips with the operation mode "ARB" in addition to the conventional 6 modes (Constant Current / Constant Resistance / Constant Voltage / Constant Power / Constant Current + Constant Voltage / Constant Resistance + Constant Voltage), the "ARB" mode features

To improve accessibility, the input terminal is placed in the upper location. to apply as "IV characteristics" mode which enables you to set the required current value against the input voltage. The high-speed response feature with the maximum slew rate of 60A/ $\mu \mathrm{s}$ (PLZ1205W) and the minimum setting resolution of $10 \mu \mathrm{~A}(\mathrm{PLZ205W})$, the PLZ5W equips with the Soft-start function, variable slew rate, selectable response (CV/CR mode), Switching function, ABC preset memory, 20 ways of set-up memories, and the Sequence feature.Because of the high-speed response, the PLZ5W can be applied to the power supply testing that requires the variable high-speed current and also for the current sensor testing. Moreover, the broad range of an external input voltage complies to the various application of testings. The PLZ-5W Series are available in 4 models and extend the system by adding the booster unit (PLZ2405W) up to $10.8 \mathrm{~kW} / 2160 \mathrm{~A}$ system realized at the low cost and space saving configuration. The communication interfaces are installed with the PLZ-5W Series for the LAN (LXI compliant), USB, and RS232C as standard feature, and which can be easily accommodate with the system operation.

DC ELECTRONIC LOAD NEW
Multifunctional Electronic Load PLZ-5W Series

Model	Operating voltage	Current	Power
PLZ205W	1 V to 150 V	40 A	200 W
PLZ405W		80 A	400 W
PLZ1205W		240 A	1200 W
PLZ2405WB		480 A	2400 W

Allows easy-to-see display in color. The voltage value, current value, power value, current capacity value (Ah), and power capacity value (Wh) at the load input terminal are indicated on the display.

The 10 KEY entry gives flexibility of operation

Newly adopted of the 10 KEY in addition to the rotary knob. Direct entry of the setting value.

Maximum Slew Rate of $60 \mathrm{~A} / \mu \mathrm{s}$

Realize 4μ s of the rise time to reach the rated current value. Applied to the fast transient response test as highly demanded in the power supply evaluation.

High speed voltage tracking characteristics

The high speed voltage tracking characteristic of the CR mode can be applied to such as the startup test of the power supply.

Application software

Coming Soon

Sequence Creation Software SD023-PLZ-5W

The SD023-PLZ-5W (Wavy for PLZ-5W) is an application software that supports sequence creation and the operation of the Kikusui power supplie and the electronic load. The "Wavy" software allows you to create and edit sequences visually using a mouse without programming knowledge. It enables you to control the power supply in much the same way as remote controller for such monitoring the voltage and current, logging and so on.
[See P9]

Operation modes

The following five operation modes are available on the PLZ-5W. Mode switching can be done only while the load is off.

Constant current (CC) mode	A current value is specified and the current is kept constant even when the voltage changes.
Constant resistance (CR) mode	A conductance value is specified and the PLZ-5W sinks current proportional to the voltage variation.
Constant voltage (CV) mode	A voltage is specified and the PLZ-5W sinks current so that the voltage at the load input end of the PLZ-5W is constant.
Constant power (CP) mode	A voltage is specified and the PLZ-5W sinks current so that the power consumed inside the electronic load is constant.
Arbitrary I-V characteristics (ARB) mode	The desired load characteristics can be set by specifying multiple arbitrary voltage values and current values as I-V characteristics.

Adjustable slew rate

You can set the speed of change when the current is changed. By setting the slew rate, the slew rate will function in the following cases.
-When the setting is changed to vary the current value
(including the switching function).
-When the current value is changed using external control in constant current (CC) mode.
-When the current value is changed while the load is on.

CC Mode / High range / 0-80A Switching

Ch4 load current 20A/div Horizontal 10us/div
$\mathbf{\Delta}$ Shift in the current waveform with the change in the slew rate

High precision and high resolution

The built-in three-range configuration provides both wide dynamic range and high precision.
-PLZ205W operating range and setting resolution

		Operating range	Setting resolution
Constant current mode	H range	0 A to 40 A	1 mA
	M range	0 A to 4 A	0.1 mA
	L range	0 A to 0.4 A	0.01 mA
Constant resistance	H range	40 S to 0.002 S	1 mS
	M range	4 S to 0.0002 S	0.1 mS
	L range	400 mS to 0.02 mS	0.01 mS
Constant voltage	H range	1 V to 150 V	5 mV
mode	L range	1 V to 15 V	0.5 mV
Constant power	H range	20 W to 200 W	0.005 W
	M range	2 W to 20 W	0.0005 W
	L range	0.2 W to 2 W	0.00005 W

* Conductance $[\mathrm{S}]=$ Input current $[\mathrm{A}] /$ Input voltage $[\mathrm{V}]=1 /$ Resistance $[\Omega]$

Load on/off operation

In addition to the regular operations, the following types of load on/off operations are available. You can choose any of these operations as suitable for your operating environment.

- Start in the load on state
- Display of the elapsed load on time
- Auto load off after the elapse of the set time
- Load on/off control using relay and other external signals

Arbitrary I-V characteristics (ARB) mode

In arbitrary I-V characteristics (ARB) mode, arbitrary I-V characteristics can be set by registering multiple I-V characteristic points (set of voltage value and current value). Three up to 100 points can be registered, and the space between two points is linearly interpolated. This mode can be used for simulation of LED loads and the like. [P7]

Example of settings	
Voltage [V]	Current [A]
0	0
3.2	0.02
4.0	0.1
4.3	0.3
4.5	0.8
157.5	0.8

Short function

When the short function is activated, in constant current (CC) mode, the maximum current value, and in constant resistance (CR) mode, the minimum voltage value, is set, and the relay contact ($30 \mathrm{Vdc} / 1 \mathrm{~A}$) of the EXT CONT connector closes. The load input terminals can be shorted by driving an external high-current relay or the like.

Switching function

In constant current and constant resistance modes, switching operations can be performed at up to 100 kHz . The switching setting parameters such as the switching level, switching frequency, and duty factor can be changed even while the load is on.

【Setting parameters】

- Operation mode: CC and CR

Frequency setting range: 1 Hz to 100 kHz
Frequency setting resolution

1 Hz to 10 Hz	0.1 Hz
11 Hz to 100 Hz	1 Hz
110 Hz to 1 kHz	10 Hz
1.1 kHz to 10 kHz	0.1 kHz
10 kHz to 100 kHz	$20 \mathrm{kHz}, 50 \mathrm{kHz}, 100 \mathrm{kHz}$

- Frequency setting accuracy: \pm (0.5% of set)

Duty factor, steps

$\frac{1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}}{}$	
11 Hz to 100 Hz	5.0% to 95.0%, in steps of 0.1%
110 Hz to 1000 Hz	
1.1 kHz to 10.0 kHz	5.0% to 95.0%, in steps of 1%
10 kHz to 100 kHz	10% to 90%, in steps of 10%

[^0]
Soft start function

Soft start is a function that controls the rise time of the load current. Soft start functions only when all the following conditions are met.

- The rise time of the soft start has been set.
- Load on state in constant current (CC) mode.
- There is an input that is equal to or exceeds the minimum operating condition, from the state where there is no input to the load input terminals.

This function is used if the output of the DUT becomes unstable when the load current rises sharply, or when wishing to delay only the current change at startup to prevent the overcurrent protection circuit of the power supply from getting activated.

Can be set to OFF / $100 \mu \mathrm{~s} / 200 \mu \mathrm{~s} / 500 \mu \mathrm{~s} / 1 \mathrm{~ms} / 2 \mathrm{~ms} / 5 \mathrm{~ms} /$ $10 \mathrm{~ms} / 20 \mathrm{~ms}$. This sets the soft start time.

Sequence function

Sequence is a function that executes a sequence of operations set in advance. A sequence consists of programs and steps. A program is a collection of steps. Steps are executed in order one at a time, starting from step 1. Upon completion of the last step of a program, execution of that program has been completed once.

Up 10000 steps total can be used in all programs.

Set a program for each operation mode.
Up to 30 programs can be set.

Setting item	Description
Load setting	Current, conductance, voltage, power. The values that can be set depend on the current operation mode.
Step execution time	0.000025 s to 3600000s
Transition method of the current value	Step or Ramp
Number of loops of program	1 to 100000 repetitions, or infinite repetitions.
Sequence editing / execution / stop method	Front panel operation or remote operation via RS232C / LAN / USB.
Miscellaneous	Load on/off control, Slew Rate, CV mode addition, Trigger signal setting, trigger signal output, Specifies the value at which a protection function (OCP, OPP, UVP) is activated.

TALink
Using the TALink (Transient Acquire Link)'s trigger, it can synchronize the step of the sequence and enables logging data to the PLZ5W. The logged data can be aqcuired through the communication with the PLZ5W.

Remote sensing function

A voltage measurement point can be changed from a load input terminal to an arbitrary sensing point by executing remote sensing. By setting sensing points to a DUT end, influences such as voltage drops caused by the resistance of the load cables can be reduced and the load current can be stabilized. To use remote sensing, connect the sensing cables to the sensing terminals of the PLZ5 W and the DUT end, and enable the remote sensing function.

- Possible remote sensing compensation voltage: approx. 7 V
(Total potential difference between the input terminals and sensing terminals)

Auto load off timer

The auto load off timer automatically turns off the load after a specified time elapses from discharge start of the DUT.
Measures the integrated power and the integrated current immediately after load off.
Applied to the discharge test of the battery.

Synchronized operation

The following synchronization features can be used by simply connecting the PLZ-5W and other equipment to be synchronized with a communication cable.

- Turning the load on/off simultaneously for multiple equipment units.
- Synchronizing measurements (remote control).
- Synchronizing the sequence start timing and resume timing across multiple units.
You can interconnect different PLZ-5W models (for example, PLZ205W and PLZ1205W). Synchronized operation is possible even during parallel operation.

Setup memory

The setup memory can store up to 20 sets (0 to 19) of the current conditions of the items listed below.

- Operation mode
- Load settings (current, conductance, voltage, power)
- Current range setting
- Voltage range setting
- Slew rate
- Switching level (current value/conductance value, or percentage)
- Switching interval (frequency/time of one cycle and duty cycle/ operating time on the high side.)
- Alarm detection point
- Content of ABC preset memories

ABC Preset memories

Three memories A, B, and C are provided for each range in each mode, and the set values can be saved. The stored set values can be called freely even while the load is on and saved again.
In constant current + constant voltage and constant resistance + constant voltage modes, the constant current and constant voltage memories and the constant resistance and constant voltage memories can be called and saved, respectively.

Diverse protection functions, Other functions

Overcurrent protection (OCP), Overpower protection (OPP), Overvoltage detection(OVP), Undervoltage protection (UVP), Overheat detection(OTP), Reverse-connection detection(REV), Alarm input detection, Configuration setting,
Applied to the USB Keyboard.

Realize 2400 W in "2U" size
Connecting up to 4 units of the booster (PLZ2405WB) unit enables the system to increase the capacity combined with the master unit the PLZ1205W. (Max. 10.8 kW, 2160 A)
The optional parallel cable (PC01-PLZ-5W) is reguired to connect between the unit and for the number of units are connected.

- Extended power with operable units of the booster. (maximum currents and maximum voltages)

Slave unit	1 unit	2 units	3 units	4 units
PLZ2405WB	720 A	1200 A	1680 A	2160 A
	3600 W	6000 W	8400 W	10800 W

- Large-capacity systems of 10.8 kW or more, rack-mounted systems, and other types of systems are supported. For more information, please contact our sales representatives.

External dimensions (max): $430(440) \mathrm{W} \times 86(105) \mathrm{H} \times 450(505) \mathrm{Dmm}$

 Weight: Approx. 15 kg (33.07 lb)
Parallel operation

Capable of connecting the same model

 up to 5 units for parallel operation system.Without using boosters, you can connect up to five units of the same model in parallel, including the master unit (max. $6 \mathrm{~kW}, 1200 \mathrm{~A}$). In the parallel connection configuration, one control master operates with one or more slave units, enabling you to control the entire system and view its data on the master unit's panel.
To connect the units requires the use of as many optional parallel cables (PC01-PLZ-5W) as the number of units to be connected.
*The PLZ2405WB (Booster) comes with 1 pc. of parallel operation cable (PC01-PLZ-5W).

- Number of parallel connected units and capacities (maximum currents and maximum voltages)

Slave unit	1 unit	2 units	3 units	4 units
PLZ205W	80 A	120 A	160 A	200 A
	400 W	600 W	800 W	1000 W
PLZ405W	160 A	240 A	320 A	400 A
	800 W	1200 W	1600 W	2000 W
PLZ1205W	480 A	720 A	960 A	1200 A
	2400 W	3600 W	4800 W	6000 W

[^1]

Evaluation of the broadband type of current sensor (example)

To combine with the high precision constant current power supply with the DC power supply, it can apply to the evaluation test of the current sensor. It is equipped with the 3 levels of the range setting, so the current setting accuracy can be selected to comply with the appropriate setting of the desired current value.

LED Load Simulation (Example)

- Arbitrary I-V characteristics (ARB) mode

In arbitrary I-V characteristics (ARB) mode, arbitrary I-V characteristics can be set by registering multiple I-V characteristic points (set of voltage value and current value). In the range from 3 to 100 points can be registered, and the space between two points is linearly interpolated. This mode can be used for simulation of LED loads and the like. Since it is capable to set arbitrary value of the current against the voltage input, it can apply to the test of the applied-voltage dependent type of switch.

Impedance measurement of the power supply (Example)

It corresponds various applications such as the impedance measurement system that can be configured with the function generator and the digital voltmeter.

PLZ-5W SR Large scale system SR Series (Smart Rack)

The compact design of large scale systems, SR (Smart Rack) Series are available. The input power are available in $6 \mathrm{~kW}, 10.8 \mathrm{~kW}, 15.6 \mathrm{~kW}$, and 20.4 kW . The maximum input current is 2160 A . (*1200 A for PLZ6005W)

- The system offers from 6 kW to 20.4 kW , in 4 models.

■ Assembled with exclusive components based on optimization design concept.
Delivers the system with fully assembled and tested, so immediate operation is possible.
The industry's smallest in its class for the multi-functional high-speed response DC electronic load.
\square AC Input 90 V to 250 V Auto select. No special wiring is required.
\square Range switching function allows to guarantee the specification even for the samller capacity input. (Perfromance test Data is included with the system as standard document) - LAN/USB/RS232C as standard interface. *GPIB option

- Capable of operation using the Sequence Creation software "Wavy".
\square The Load input terminal is designed on the Safety-Comes-First concept. (protection against electric shocks)
\square Load cable for large current is available.

PLZ6005W SR
6 kw

PLZ10005W SR
10.8 kW

PLZ15005W SR
15.6 kW

20.4 kW

The boxed type safety cover is equipped on all models.

Maximizing the Safe and Secure design of the load input terminal based on the safety features (protecting from electric shocks), but also from usability perspectives such as an easy-to-connect operation by opening the terminal cover, and capable of visual check.

Applications (example)

- Charge/Discharge test on the large capacity secondary battery - Converter evaluation - Alternator evaluation - FC stack cell evaluation - PV panel evaluation - EV charger evaluation - Heat generation evaluation by the harness electric conduction
- Capacitor endurance test - Evaluation on the industrial larage capacity DC power suppy system
\square PLZ-5W SR Series

Specifications	Rating			Constant current mode (CC)				Constant voltage mode (CV)				
Model	Operating voltage	Current	Power	Operating range			Ripple	Operating range			Resolution	
	V	A	W	H range (A)	M range (A)	L range (A)	mArms*	H range (V)	L range (V)		(mV)	L range (mV)
PLZ6005W SR	1 to 150	1200	6000	0 to 1260	0 to 126	0 to 12.6	120	0 to 157.50	0 to 15.750	5		0.5
PLZ10005W SR		2160	10800	0 to 2268	0 to 226.8	0 to 22.68	216					
PLZ15005W SR			15600	0 to 3276	0 to 327.6	$0 \text { to } 32.76$	312					
PLZ20005W SR			20400	0 to 4284	0 to 428.4	0 to 42.84	408					
Specifications	Constant resistance mode (CR)				Constant power mode (CP)					Weight	Powe	r consumption
Model	Operating range				Operating range					Approx		Approx.
	H range (S)	M range (S)		L range (S)	H range (W)		M range (W)	L range (W)		kg		VA
PLZ6005W SR	1260 to 0	126 to 0		12.6 to 0	0 to 6300		0 to 630	0 to 63		82		275
PLZ10005W SR	2268 to 0	226.8 to 0		22.68 to 0	0 to 11340		0 to 1134	0 to 11		120		465
PLZ15005W SR	3276 to 0	327.6 to 0		32.76 to 0	0 to 16380		0 to 1638	0 to 163		160		655
PLZ20005W SR	4284 to 0	428.4 to 0		42.84 to 0	0 to 21420		0 to 2142	0 to 21		200		855

\square High Current Load Wire (Solderless terminals on both ends.)

Model	DC14-2P3M-M12M8	DC38-2P3M-M12M8	DC80-2P3M-M12M8	DC80-2P3M-M12M12	DC150-2P3M-M12M12	DC150-4P3M-M12M12	DC600-2P3M-M12M12
Maximum Allowable voltage	650 V						150 V
Maximum Allowable current	50 A	100 A	200 A	200 A	300 A	500 A	1000 A
Terminal	M12 / M8	M12 / M8	M12 / M8	M12 / M12	M12 / M12	M12 / M12	M12 / M12
Nominal CrossSectional Area	$14 \mathrm{~mm}^{2}$ (Equivalent of AWG5)	$38 \mathrm{~mm}^{2}$ (Equivalent of AWG1)	$80 \mathrm{~mm}^{2}$ (Equivalent of AWG3/0)	$80 \mathrm{~mm}^{2}$ (Equivalent of AWG3/0)	$150 \mathrm{~mm}^{2}$ (Equivalent of AWG6/0)	$150 \mathrm{~mm}^{2}$ (Equivalent of AWG6/0)	$600 \mathrm{~mm}^{2}$
Length / Weight *Per cable	Approx. $3 \mathrm{~m} /$ Approx. 0.5 kg	Approx. $3 \mathrm{~m} /$ Approx. 1.4 kg	Approx. $3 \mathrm{~m} /$ Approx. 2.8 kg	Approx. $3 \mathrm{~m} /$ Approx. 2.8 kg	Approx. $3 \mathrm{~m} /$ Approx. 5 kg	Approx. $3 \mathrm{~m} /$ Approx. 5 kg	Approx. $3 \mathrm{~m} /$ Approx. 20 kg
Exterior design							

GPIB converter (PIA5100)

This converter converts RS232C or USB of the PLZ-5W to GPIB, enabling connection of a remote controller using GPIB.
[Accessories: Power cord set, Magnetic sheet]

Rack adapters, brackets

These are rack mounting options.

Parallel operation signal cable kit (PC01-PLZ-5W)

The number of cables are required for the number of connecting units. Cable length: 30 cm
*The PLZ2405WB (Booster) comes with 1 pc. of parallel operation cable (PC01-PLZ-5W).

Name	Model	Appropriate Model	Description
Rack adapters 	KRA3	PLZ205W	For EIA inch racks
	KRA150		For JIS millimeter racks
	KRB3-TOS	PLZ1205W	For EIA inch racks
	KRB150-TOS		For JIS millimeter racks
	KRB2-TOS	PLZ2405WB	For EIA inch racks
	KRB100-TOS		For JIS millimeter racks

*1 When using blank panels for rack adapters, please use KBP3-2.

Application software

Sequence creation software Wavy series

Sequence creation software Coming Soon Wavy for the PLZ-5W (SD023-PLZ-5W)
[Operating environment] Windows 7 / Windows 8.1 / Windows 10 *For details, please refer to our web site.

The software that further enhances the waveform generation and sequence functions.
Using a mouse, you can create and edit feel like drawing and filling out the spreadsheet.

■ Creating and editing data of test conditions required so that the sequence operation can be done easily.

- Using the save function for data files of test conditions makes routine test condition control easy.
- The progress of executed sequences is displayed by the cursor and settings on an "execution graph."
- It is possible to observe actual output intuitively, using a "monitor graph" that plots monitored values while an execution is in progress.
- Acquired monitor data can be saved as test results.

■ A "waveform image" window was newly added, making it easy to see the waveforms of alternating current (AC) signals.

- Arbitrary new waveforms can be easily created and edited. Also, arbitrary waveforms that are created can be quickly written and output.
- The product supports the selection and nonselection of sequence step items. Functions such as the pause function, trigger function, and AC waveform can be selected as needed.

PLZ205W/PLZ405W/PLZ1205W Specifications

Ratings				
Item		PLZ205W	PLZ405W	PLZ1205W
Operating voltage		1 V to 150 V *1		
Current		40 A	80 A	240 A *2
Power		200 W	400 W	1200 W
The minimum operating voltage		approximately 0.05 V . (At the load input terminals on the rear panel.)		
Input resistance when the load is off		Approx. $660 \mathrm{k} \Omega$ * ${ }^{\text {a }}$		
Load input isolation vo	erminal's tage	$\pm 500 \mathrm{~V}$		
*1 In switching mode, for every slew rate setting of $1 \mathrm{~A} / \mu \mathrm{s}$, the minimum operating voltage (including the voltage drop due to the wiring inductance component) increases by approximately 150 mV for the PLZ205W, 125 mV for the PLZ405W, and 75 mV for the PLZ1205W. *2 80 A for the load input terminals on the front panel. The specifications of the PLZ-5W are for the load input terminals on the rear panel and the load input terminals on the front panel may not meet the specifications. * 3 In the case of parallel operation using the same models, approx. $660 /$ number of units $\mathrm{k} \Omega$.				
Constant current (CC) mode				
Item		PLZ205W	PLZ405W	PLZ1205W
Operating range	H range	0 A to 40 A	0 A to 80 A	0 A to 240 A
	M range	0 A to 4 A	0 A to 8 A	0 A to 24 A
	L range	0 A to 0.4 A	0 A to 0.8 A	0 A to 2.4 A
Setting range	H range	0 A to 42 A	0 A to 84 A	0 A to 252 A
	M range	0 A to 4.2 A	0 A to 8.4 A	0 A to 25.2 A
	L range	0 A to 0.42 A	0 A to 0.84 A	0 A to 2.52 A
Resolution	H range	1 mA	2 mA	5 mA
	M range	0.1 mA	0.2 mA	0.5 mA
	L range	0.01 mA	0.02 mA	0.05 mA
Setting accuracy	H range	\pm (0.2% of set $+0.1 \%$ of range)		
	M range	\pm (0.2% of set $+0.3 \%$ of range)		
	L range	\pm (0.2% of set $+1 \%$ of range)		
Parallel operation	H range	\pm (0.4\% of set $+0.8 \%$ of range)		
	M range	\pm (0.4% of set $+0.8 \%$ of range)		
	L range	\pm (0.4% of set $+5 \%$ of range)		
Input line regulation *1		4 mA	8 mA	24 mA
Ripple	rms *2	4 mA	8 mA	24 mA
	p-p *3	40 mA	80 mA	200 mA

*1 When the input voltage is changed from 1 V to 150 V at a current of rated power $/ 150 \mathrm{~V}$.
*2 Measurement frequency bandwidth: 10 Hz to 1 MHz
*3 Measurement frequency bandwidth: 10 Hz to 20 MHz

Constant resistance (CR) mode				
Item		PLZ205W	PLZ405W	PLZ1205W
Operating range *1	H range	$\begin{aligned} & 40 \mathrm{~S} \text { to } 0.002 \mathrm{~S} \\ & (0.025 \Omega \text { to } 500 \Omega) \end{aligned}$	$\begin{gathered} 80 \mathrm{~S} \text { to } 0.004 \mathrm{~S} \\ (0.0125 \Omega \text { to } 250 \Omega) \end{gathered}$	$\begin{gathered} 240 \mathrm{~S} \text { to } 0.012 \mathrm{~S} \\ (0.0042 \Omega \text { to } 83.333 \Omega) \end{gathered}$
	M range	$\begin{gathered} 4 \mathrm{~S} \text { to } 0.0002 \mathrm{~S} \\ (0.25 \Omega \text { to } 5000 \Omega) \end{gathered}$	$\begin{gathered} 8 \mathrm{~S} \text { to } 0.0004 \mathrm{~S} \\ (0.125 \Omega \text { to } 2500 \Omega) \end{gathered}$	$\begin{gathered} 24 \mathrm{~S} \text { to } 0.0012 \mathrm{~S} \\ (0.042 \Omega \text { to } 833.33 \Omega) \end{gathered}$
	L range	400 mS to 0.02 mS (2.5Ω to 50000Ω)	800 mS to 0.04 mS (1.25Ω to 25000Ω)	2400 mS to 0.12 mS (0.42Ω to 8333.3Ω)
Setting range	H range	42 S to 0 S (0.0238Ω to Open)	84 S to 0 S (0.0119Ω to Open)	$\begin{gathered} 252 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ (0.00397 \Omega \text { to Open) } \end{gathered}$
	M range	$\begin{gathered} 4.2 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ (0.238 \Omega \text { to Open) } \end{gathered}$	$\begin{gathered} 8.4 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ (0.119 \Omega \text { to Open }) \end{gathered}$	$\begin{gathered} 25.2 \mathrm{~S} \text { to } 0 \mathrm{~S} \\ (0.0397 \Omega \text { to Open }) \end{gathered}$
	L range	420 mS to 0 S (2.38Ω to Open)	840 mS to 0 S (1.19Ω to Open)	$\begin{gathered} 2520 \mathrm{mS} \text { to } 0 \mathrm{~S} \\ (0.397 \Omega \text { to Open }) \end{gathered}$
Resolution	H range	1 mS	2 mS	5 mS
	M range	0.1 mS	0.2 mS	0.5 mS
	L range	0.01 mS	0.02 mS	0.05 mS
Setting accuracy *2	H range	\pm (0.5\% of set $+0.5 \%$ of range)		
	M range	\pm (0.5% of set $+0.5 \%$ of range)		
	L range	\pm (0.5% of set $+1.5 \%$ of range)		
Parallel operation	H range	\pm (0.5% of set $+1.5 \%$ of range)		
	M range	\pm (0.5% of set $+1.5 \%$ of range)		
	L range	\pm (0.5% of set $+5 \%$ of range)		

*1 Conductance $[\mathrm{S}]=$ input current $[\mathrm{A}] /$ input voltage $[\mathrm{V}]=1 /$ resistance $[\Omega]$
*2 Converted value at the input current. At the sensing terminals.

Constant voltage (CV) mode				
Item		PLZ205W	PLZ405W	PLZ1205W
Operating range	H range	1 V to 150 V		
	L range	1 V to 15 V		
Setting range	H range	0 V to 157.5 V		
	L range	0 V to 15.75 V		
Resolution	H range	5 mV		
	L range	0.5 mV		
\begin{tabular}{l\|l	}			
\hline				
\end{tabular}${ }^{\text {Setting }}$accuracy ${ }_{* 1}$ Parallel operation		\pm (0.1% of set $+0.1 \%$ of range)		
		\pm (0.2% of set $+0.2 \%$ of range)		
Input current variation*2		12 mV		

Constant power (CP) mode				
Item		PLZ205W	PLZ405W	PLZ1205W
Operating range	H range	20 W to 200 W	40 W to 400 W	120 W to 1200 W
	M range	2 W to 20 W	4 W to 40 W	12 W to 120 W
	L range	0.2 W to 2 W	0.4 W to 4 W	1.2 W to 12 W
Setting range	H range	0 W to 210 W	0 W to 420 W	0 W to 1260 W
	M range	0 W to 21 W	0 W to 42 W	0 W to 126 W
	L range	0 W to 2.1 W	0 W to 4.2 W	0 W to 12.6 W
Resolution	H range	0.005 W	0.01 W	0.05 W
	M range	0.0005 W	0.001 W	0.005 W
	L range	0.00005 W	0.0001 W	0.0005 W
Setting accuracy *1	H range	$\begin{gathered} \pm(0.5 \% \text { of range } \\ +0.04 \mathrm{~A} \times \mathrm{Vin}) \end{gathered}$	$\begin{gathered} \pm(0.5 \% \text { of range } \\ +0.08 \mathrm{~A} \times \mathrm{Vin}) \end{gathered}$	$\begin{gathered} \pm(0.5 \% \text { of range } \\ +0.24 \mathrm{~A} \times \mathrm{Vin}) \end{gathered}$
	M range	$\begin{aligned} & \pm(0.5 \% \text { of range } \\ & +0.008 \mathrm{~A} \times \mathrm{Vin}) \end{aligned}$	$\begin{aligned} & \pm(0.5 \% \text { of range } \\ & +0.016 \mathrm{~A} \times \mathrm{Vin}) \end{aligned}$	$\begin{aligned} & \pm(0.5 \% \text { of range } \\ & +0.048 \mathrm{~A} \times \mathrm{Vin}) \end{aligned}$
	L range	$\begin{aligned} & \pm(1 \% \text { of range } \\ & +0.004 \mathrm{~A} \times \mathrm{Vin}) \end{aligned}$	$\begin{aligned} & \pm(1 \% \text { of range } \\ & +0.008 \mathrm{~A} \times \mathrm{Vin}) \end{aligned}$	$\begin{aligned} & \pm(1 \% \text { of range } \\ & +0.024 \mathrm{~A} \times \mathrm{Vin}) \end{aligned}$
Parallel operation	H range	\pm (2% of range $+0.4 \%$ current range \times Vin)		
	M range	$\pm(2 \%$ of range $+0.4 \%$ current range \times Vin)		
	L range	\pm (2% of range $+2.5 \%$ current range \times Vin)		
${ }_{*} 1$ Vin: The voltage at the load input terminals on the rear panel or sensing terminals.				
Arbitrary I-V characteristics (ARB) mode				
Item		PLZ205W	PLZ405W	PLZ1205W
Operating range		Three to 100 points of current values can be set for the input voltage. The space between two points is linearly interpolated.		
Response speed		Response for input voltage minimum $50 \mu \mathrm{~s}$.		
Voltmeter				
Item		PLZ205W	PLZ405W	PLZ1205W
Display	H range	0.00 V to 150.00 V		
	L range	0.000 V to 15.000 V		
Accuracy		\pm (0.1% of reading $+0.1 \%$ of range)		
Paralle operation (TYP)		\pm (0.1% of reading $+0.1 \%$ of range)		
Ammeter				
Item		PLZ205W	PLZ405W	PLZ1205W
Display	H range	0.000 A to 40.000 A	0.000 A to 80.000 A	0.00 A to 240.00 A
	M range	0.0000 A to 4.0000 A	0.0000 A to 8.0000 A	0.000 A to 24.000 A
	L range	0.00 mA to 400.00 mA	0.00 mA to 800.00 mA	0.0000 A to 2.4000 A
Accuracy	H, M range	\pm (0.2% of reading $+0.3 \%$ of range)		
	L range	\pm (0.2% of reading $+1 \%$ of range)		
Parallel operation (TYP)	H, M range	\pm (0.4% of reading $+0.8 \%$ of range)		
	L range	\pm (0.4\% of reading $+5 \%$ of range)		
Power display				
Item		PLZ205W	PLZ405W	PLZ1205W
Display		Displays the product of the voltmeter reading and ammeter reading.		
Switching function				
Item		PLZ205W	PLZ405W	PLZ1205W
Operation mode		CC and CR		
Frequency setting range		1.0 Hz to 100.0 kHz		
Frequency setting resolution		1 Hz to $10 \mathrm{~Hz} ~ 0.1 ~ H z ~$		
		11 Hz to $100 \mathrm{~Hz}1 \mathrm{~Hz}$		
		110 Hz to 1000 Hz 10 Hz		
		1.1 kHz to 10.0 kHz 0.1 kHz		
		10 kHz to $100 \mathrm{kHz}20 \mathrm{kHz}, 50 \mathrm{kHz}, 100 \mathrm{kHz}$		
Frequency setting accuracy		\pm (0.5\% of set)		
Duty cycle setting range, step *1		1 Hz to $10 \mathrm{~Hz}5 .0 \% ~ t o ~ 95.0 \%, ~ 0.1 \% ~ s t e p s ~$		
		11 Hz to $100 \mathrm{~Hz}5 .0 \%$ to $95.0 \%, 0.1 \%$ steps		
		110 Hz to 1000 Hz 5.0% to $95.0 \%, 0.1 \%$ steps		
		1.1 kHz to $10.0 \mathrm{kHz}5 \%$ to $95 \%, 1 \%$ steps		
		10 kHz to $100 \mathrm{kHz}10 \%$ to 90%, 10\% steps		
${ }^{*} 1$ The minimum time span is 5 us. The minimum duty cycle is limited by the minimum time span.				
Slew rate				
Item		PLZ205W	PLZ405W	PLZ1205W
Operation mode		CC		
Setting range	H range	$0.01 \mathrm{~A} / \mu \mathrm{s}$ to $10 \mathrm{~A} / \mu \mathrm{s}$	$0.02 \mathrm{~A} / \mu \mathrm{s}$ to $20 \mathrm{~A} / \mu \mathrm{s}$	$0.06 \mathrm{~A} / \mu \mathrm{s}$ to $60 \mathrm{~A} / \mu \mathrm{s}$
	M range	$0.001 \mathrm{~A} / \mu \mathrm{s}$ to $1 \mathrm{~A} / \mu \mathrm{s}$	$0.002 \mathrm{~A} / \mu \mathrm{s}$ to $2 \mathrm{~A} / \mu \mathrm{s}$	$0.006 \mathrm{~A} / \mu \mathrm{s}$ to $6 \mathrm{~A} / \mu \mathrm{s}$
	L range	$0.1 \mathrm{~mA} / \mu$ s to $100 \mathrm{~mA} / \mu \mathrm{s}$	$0.2 \mathrm{~mA} / \mu \mathrm{s}$ to $200 \mathrm{~mA} / \mu \mathrm{s}$	$0.6 \mathrm{~mA} / \mu \mathrm{s}$ to $600 \mathrm{~mA} / \mu \mathrm{s}$
Resolution	H range	$0.01 \mathrm{~A} / \mu \mathrm{s}$	$0.02 \mathrm{~A} / \mu \mathrm{s}$	$0.06 \mathrm{~A} / \mu \mathrm{s}$
	M range	$0.001 \mathrm{~A} / \mu \mathrm{s}$	$0.002 \mathrm{~A} / \mu \mathrm{s}$	$0.006 \mathrm{~A} / \mu \mathrm{s}$
	L range	0.1 mA / $\mu \mathrm{s}$	$0.2 \mathrm{~mA} / \mu \mathrm{s}$	$0.6 \mathrm{~mA} / \mu \mathrm{s}$
Setting accuracy *1	H, M range	\pm (10% of set $+1.25 \mu \mathrm{~s}$)		
	L range	\pm (12\% of set $+5 \mu \mathrm{~s}$)		
*1 The time it takes to shift from 10% to 90% when the current is varied from 0% to 100% of the rated current.				
Soft start				
Item		PLZ205W	PLZ405W	PLZ1205W
Operation mode		CC		
Time setting range		$\frac{100 \mu \mathrm{~s}, 200 \mu \mathrm{~s}, 500 \mu \mathrm{~s}, 1 \mathrm{~ms}, 2 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}, 20 \mathrm{~ms}, \text { or off }}{ \pm(30 \% \text { of set }+10 \mu \mathrm{~s})}$		
Time setting accuracy				

*1 Vin: The voltage at the load input terminals on the rear panel or sensing terminals.

PLZ205W/PLZ405W/PLZ1205W Specifications

Possible remote sensing compensation voltage				
	Item	PLZ205W	PLZ405W	PLZ1205W
approx. 7 V (Total potential difference between the input terminals and sensing terminals)				
Protective function				
Item		PLZ205W	PLZ405W	PLZ1205W
Overcurrent protection (OCP)	Setting range	0.0 A to 44.0 A	0.0 A to 88.0 A	0.0 A to 264.0 A
	Resolution	0.1 A	0.2 A	0.5 A
	Protection operation	Either load off or limitation can be selected.		
Overpower protection (OPP)	Setting range	0 W to 220 W	0 W to 440 W	0 W to 1320 W
	Resolution	1 W	2 W	5 W
	Protection operation	Either load off or limitation can be selected.		
Undervoltage protection (UVP)	Setting range	0.00 V to 150.00 V , or off		
	Resolution	0.01 V		
	Protection operation	Load off		
Watchdog protection(WDP)	Setting range	60 s to 3600 s, or off		
	Protection operation	Load off		

Sequence function			
Item	PLZ205W	PLZ405W	PLZ1205W
Operation mode	CC, CR, CV, CP		
Maximum number of programs	30		
Maximum number of steps	10000		
Step execution time	25 s to 1000 h		
Time resolution	$25 \mu \mathrm{~s}$		
Other functions			
Item	PLZ205W	PLZ405W	PLZ1205W
Elapsed time display	Displays the time from load on to load off.		
Range	1s to 999 h 59 min 59 s .		
Integrated current display	Displays integrated current.		
Integrated power display	Displays integrated power.		
Auto load off timer	Automatically turns off the load after the specified time elapses		
Setting range	1s to 3599999s, or off.		

EXT CONT connector	
Item	
Load on/off control input	Th
Range control input	An
Alarm input	A
Alarm clearing input	Pa
Trigger input	
External voltage control input (CC, CR, CP mode)	
Setting accuracy	

External voltage control input (CV mode) Setting accuracy

External voltage control input (superimposing in CC mode)	
	Setting accuracy
Load-on status output	
Range status output	
ALARM 1 output	
ALARM 2 output	
DIGITAL 0 / DIGITAL 1 output	
DIGITAL 2 output	
Current monitor output	
	Accuracy

PLZ1205W

Logic level switchable. Pulled up to 5 V by a $10 \mathrm{k} \Omega$ resistor. The thresholds are HIGH: 3.5 V to 5 V , LOW: 0 V to 1.5 V . The range can be switched between L, M, and H using a 2 bit signal. Pulled up to 5 V by a $10 \mathrm{k} \Omega$ resistor. The thresholds are HIGH: 3.5 V to $5 \mathrm{~V}, \mathrm{LOW}: 0 \mathrm{~V}$ to 1.5 V . An alarm is activated with a voltage between 0 V and 1.5 V . Pulled up to 5 V by a $10 \mathrm{k} \Omega$ resistor. The thresholds are HIGH: 3.5 V to 5 V , LOW: 0 V to 1.5 V . After an alarm occurs, eliminate the root cause of the alarm, and change the input to pin 5 of the EXT CONT connector from a low level signal to a high level signal.

The alarm will be cleared on the rising edge of this signal. Pulled up to 5 V by a $10 \mathrm{k} \Omega$ resistor. The thresholds are HIGH: 3.5 V to $5.0 \mathrm{~V}, \mathrm{LOW}: 0 \mathrm{~V}$ to 1.5 V . Paused sequence operation resumes when a voltage between 0 V and 0.8 V is received. Pulled up to 5 V by a $10 \mathrm{k} \Omega$ resistor. The thresholds are HIGH: 2 V to $5 \mathrm{~V}, \mathrm{LOW}: 0 \mathrm{~V}$ to 0.8 V . Controls the load settings of CC, CR, CP mode through external voltage input. The input impedance is approx. $10 \mathrm{k} \Omega$.
CC: The setting can be controlled in the range of 0% to 100% of the rated current through external voltage input of 0 V to 10 V .
CR: The setting can be controlled in the range of 0% to 100% of the conductance setting through external voltage input of 0 V to 10 V . CP: The setting can be controlled in the range of 0% to 100% of the rated power through external voltage input of 0 V to 10 V . \pm (1% of range) (TYP value of H range in CC mode)
The load setting of CV mode can be controlled through external voltage input. The rated voltage can be controlled in the range of 0% to 100% with 0 V to 10 V . The input impedance is approx. $10 \mathrm{k} \Omega$. \pm (1% of range) (TYP value)
Controls the load setting of CC mode by adding current through external voltage input.
Adds current in the range of -100% to 100% of the rated current for -10 V to 10 V . The input impedance is approx. $10 \mathrm{k} \Omega$. \pm (1% of range) (TYP value of H range)
On when load is on. Open-collector output from a photocoupler. ${ }^{* 1}$
Outputs current range state L, M, and H using 2 bits. Open-collector output from a photocoupler. ${ }^{* 1}$
ON when overvoltage detection, reverse-connection detection, overheat detection, alarm input detection, front-panel load terminal overcurrent detection or parallel operation anomaly detection is activated. Open-collector output from a photocoupler. ${ }^{* 1}$ On when OCP, OPP, UVP, or WDP is operating.
Logic signal output during a step of a sequence. Output impedance: approx. 330Ω, output voltage: approx. $3.3 \mathrm{~V}_{\text {EMF }}$
Can be switched between input and output. Output: Logic signal output during a step of a sequence. The output impedance is 330Ω. Input: This signal is the trigger input signal for the sequence and the measurement functions. The thresholds are HIGH: 2 V to $5 \mathrm{~V}, \mathrm{LOW}: 0 \mathrm{~V}$ to 0.8 V .

Outputs 0 V to 10 V for 0% to 100% of the rated current of each range.
\pm (1% of range) (TYP value of H range)
Relay contact on when the short function is turned on ($30 \mathrm{Vdc} / 1 \mathrm{~A}$).
*1 The maximum voltage that can be applied to the photocoupler is 30 V . The maximum current is 4 mA .

Front-panel BNC terminal	Trigger output
Tra	
Current monitor output	
Accuracy	
Isolation voltage	
Communication function	
LAN	D-SU
RS232C	
USB	

Transmits 10μ s pulses when trigger output is ON during sequence operation and during step execution. Transmits $1 \mu \mathrm{~s}$ pulses during switching operation. Outputs 0 V to 2 V for 0% to 100% of the rated current of each range. \pm (1\% of range) (TYP value of H range)

Electromagnetic compatibility (EMC) *1 *2
 Safety * 1

D-SUB 9 -pin connector Baud rate: $9600,19200,38400,115200$ bps Data length: 8 bits, Stop bits: 1 bit, Parity bit: None, Flow control: None, CTS-RTS Complies with the USB 2.0 specification. Data rate: 480 Mbps (High speed) Complies with the USBT MC-USB488 device class specifications.

$500 \mathrm{Vdc}, 30 \mathrm{M} \Omega$ or more (70% rh or less)
No abnormalities at 1500 Vac for 1 minute.
No abnormalities at 1500 Vac for 1 minute.
No abnormalities at 750 Vac for 1 minute.
214.5 (8.45)W $\times 124$ (4.88) $\mathrm{H} \times 400$ (15.75) Dmm(inches)

Approx. 7 kg (15.4 lb.$) \quad$ Approx. $7.5 \mathrm{~kg}(16.5 \mathrm{lb}$.
429.5 (16.91) W $\times 128$ (5.04) $\mathrm{H} \times 400$ (15.75) Dmm(inches)

Power cord, Rear-panel load input terminal cover, Load input terminal screw set (2 sets), Screws for the rear-panel load input terminal cover (2 pcs.), Frontpanel load input terminal cover, Front-panel load input knob set, External control connector kit, Setup Guide, CD-ROM, Quick Reference, Safety Information

Complies with the requirements of the following directive and standards.
EMC Directive 2014/30/EU, EN 61326-1 (Class A*3), EN 55011 (Class A*3, Group 1^{*}), EN 61000-3-2, EN 61000-3-3
Applicable under the following conditions.The maximum length of all cabling and wiring connected to the PLZ-5W must be less than 3 m .
Complies with the requirements of the following directive and standards. Low Voltage Directive 2014/35/EU*2 EN 61010-1 (Class $1^{*} 5$, Pollution Degree $2^{*} 6$)

PLZ2405WB Specifications

Ratings		
Item		PLZ2405WB
Operating voltage		1 Vdc to 150 Vdc
Current		480 A
Power		2400 W
Current range		
H range		0 A to 480 A
M range		0 A to 48 A
L range		0 A to 4.8 A
Setting accuracy		
CC mode	H range	\pm (0.4\% of set $+0.8 \%$ of range)
	M range	\pm (0.4% of set $+0.8 \%$ of range)
	L range	\pm (0.4% of set $+5 \%$ of range)
CR mode	H range	\pm (0.5% of set $+1.5 \%$ of range)
	M range	\pm (0.5% of set $+1.5 \%$ of range)
	L range	\pm (0.5% of set $+5 \%$ of range)
CV mode	H,M,L range	\pm (0.2% of set $+0.2 \%$ of range)
CP mode	H range	$\pm\left(2 \%\right.$ of range $+0.4 \%$ current range $\times \mathrm{Vin}^{* 1}$)
	M range	$\pm\left(2 \%\right.$ of range $+0.4 \%$ current range $\times \mathrm{Vin}^{* 1}$)
	L range	$\pm\left(2 \%\right.$ of range $+2.5 \%$ current range $\times \mathrm{Vin}^{* 1}$)
Measurement accuracy		
Voltmeter accuracy		\pm (0.1% of reading $+0.1 \%$ of range)
Ammeter accuracy	H range	\pm (0.4% of reading $+0.8 \%$ of range)
	M range	\pm (0.4% of reading $+0.8 \%$ of range)
	L range	\pm (0.4% of reading $+5 \%$ of range)
Protection functions		
Over temperature protection (OTP)		Turns off the load when the heatsink temperature reaches $100^{\circ} \mathrm{C}$

General specifications		
	Item	PLZ2405WB
Input power supply voltage range		100 Vac to 240 Vac (90 Vac to 250 Vac) single-phase, continuous
Input frequency range		47 Hz to 63 Hz
Power consumption		95 VAmax
Inrush current (peak value)		45 Apeak
Operating temperature range		$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right.$ to $\left.104{ }^{\circ} \mathrm{F}\right)$
Operating humidity range		20\%rh to 85\%rh (no condensation)
Storage temperature range		$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Storage humidity range		90% rh or less (no condensation)
Installation location		Indoor use, altitude of up to 2000 m , overvoltage category II
Isolation voltage		$\pm 500 \mathrm{~V}$
Insulation resistance	Between primary and input terminals	500 Vdc $30 \mathrm{M} \Omega$ or greater (at 70% rh humidity or less)
	Between primary and chassis	
	Between inputterrinals and chassis	
Withstanding voltage	Between primary and input terminals	No abnormalities at 1500 Vac for 1 minute
	Between primary and chassis	No abnormalities at 1500 Vac for 1 minute
	Betwen inputterminals and chassis	No abnormalities at 750 Vdc for 1 minute
External dimensions		$430(16.93) \mathrm{W} \times 86$ (3.39) $\mathrm{H} \times 450$ (17.72) Dmm (inches)
	Weight	Approx. 15 kg (33.07 lb)
Accessories		Power cord, Load input terminal cover, Parallel operation signal cable kit (PC01-PLZ-5W), Load input terminal screw set (2 sets), Screws for the load input terminal cover (2 pcs.), Operation manual

Outline drawing

-PLZ205W, PLZ405W

-PLZ1205W

Unit: mm (inches)

©PLZ2405WB

© KIKUSUI

KIKUSUI ELECTRONICS CORPORATION

1-1-3, Higashiyamata, Tsuzuki-ku, Yokohama, 224-0023, Japan
Phone: (+81) 45-593-7570, Facsimile: (+81) 45-593-7571, www.kikusui.co.jp
KIKUSUI AMERICA, INC. 1-877-876-2807 www.kikusuiamerica.com
EMTIUSU"
2975 Bowers Avenue, Suite 307, Santa Clara, CA 95051 Phone : 408-980-9433 Facsimile : 408-980-9409

KIKUSUI TRADING (SHANGHAI) Co., Ltd. www.kikusui.cn

Distributor:

All products contained in this catalogue are equipment and devices that are premised on use under the supervision of qualified personnel, and are not designed or produced for home-use or use by general consumers. Specifications, design and so forth are subject to change without prior notice to improve the quality. - Product names and prices are subject to change and production may be discontinued when necessary. ■ Product names, company names and brand names contained in this catalogue represent the respective registered trade name or trade mark. W Colors, textures and so forth of photographs shown in this catalogue may differ from actual products due to a limited fidelity in this catalogue, certain details have unavoidably been omitted due to limitations in space. If you find any misprints or errors in this catalogue, it would be appreciated if you would inform us. Please contact our distributors to confirm specifications, price, accessories or anything that may be unclear when placing an order or concluding a purchasing agreement.

Printed in Japan
2016071KPRIEC11

[^0]: * The minimum time interval for setting the duty factor is $5 \mu \mathrm{~s}$.

[^1]: *Having the calibration for the parrallel operation system, the setting accracy of the Constant Current mode and the current measurement accuracy can be adjusted to the equivalent level of accuracy of the single unit.

